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MRCET VISION 

 
To establish a pedestal for the integral innovation, team spirit, originality and competence in 

the students, expose them to face the global challenges and become pioneers of Indian vision 

of modern society. 

MRCET MISSION 

 
 To become a model institution in the fields of Engineering, Technology and Management. 

 

 To have a perfect synchronization of the ideologies of MRCET with challenging demands 

of International Pioneering Organizations. 

 

MRCET QUALITY POLICY. 

 
 To pursue continual improvement of teaching learning process of Undergraduate and Post 

Graduate programs in Engineering & Management vigorously. 

 To provide state of art infrastructure and expertise to impart the quality education. 
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PROGRAM OUTCOMES 
(PO’s) 

Engineering Graduates will be able to: 

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 

problems. 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences. 

3. Design / development of solutions: Design solutions for complex  engineering 

problems and design system components or processes that meet the specified needs with 

appropriate consideration for the public health and safety, and the cultural, societal, and 

environmental considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, 

and synthesis of the information to provide valid conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 

engineering activities with an understanding of the limitations. 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to 

assess societal, health, safety, legal and cultural issues and the consequent 

responsibilities relevant to the professional engineering practice. 

7. Environment and sustainability: Understand the impact of the professional 

engineering solutions in societal and environmental contexts, and demonstrate the 

knowledge of, and need for sustainable development. 

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities 

and norms of the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a member or 
leader in diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as,  being able to comprehend 

and write effective reports and design documentation, make effective presentations, and 

give and receive clear instructions. 

11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a 

member and leader in a team, to manage projects and in multi  disciplinary 

environments. 

12. Life- long learning: Recognize the need for, and have the preparation and ability to 

engage in independent and life-long learning in the broadest context of technological 

change. 
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DEPARTMENT OF AERONAUTICAL ENGINEERING 

VISION 

Department of Aeronautical Engineering aims to be indispensable source in Aeronautical 

Engineering which has a zeal to provide the value driven platform for the students to acquire 

knowledge and empower themselves to shoulder higher responsibility in building a strong 

nation. 

MISSION 

The primary mission of the department is to promote engineering education and research. To 

strive consistently to provide quality education, keeping in pace with time and technology. 

Department passions to integrate the intellectual, spiritual, ethical and social development of 

the students for shaping them into dynamic engineers. 

 

 
QUALITY POLICY STATEMENT 

Impart up-to-date knowledge to the students in Aeronautical area to make them quality 

engineers. Make the students experience the applications on quality equipment and tools. 

Provide systems, resources and training opportunities to achieve continuous improvement. 

Maintain global standards in education, training and services. 
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PROGRAM EDUCATIONAL OBJECTIVES – Aeronautical 

Engineering 

1. PEO1 (PROFESSIONALISM & CITIZENSHIP): To create and sustain a community of 

learning in which students acquire knowledge and learn to apply it professionally with due 

consideration for ethical, ecological and economic issues. 

2. PEO2 (TECHNICAL ACCOMPLISHMENTS): To provide knowledge based services to 

satisfy the needs of society and the industry by providing hands on experience in various 

technologies in core field. 

3. PEO3 (INVENTION, INNOVATION AND CREATIVITY): To make the students to 

design, experiment, analyze, and interpret in the core field with the help of other multi 

disciplinary concepts wherever applicable. 

4. PEO4 (PROFESSIONAL DEVELOPMENT): To educate the students to disseminate 

research findings with good soft skills and become a successful entrepreneur. 

5. PEO5 (HUMAN RESOURCE DEVELOPMENT): To graduate the students in building 

national capabilities in technology, education and research 

 

 

PROGRAM SPECIFIC OUTCOMES – Aeronautical 

Engineering 

1. To mould students to become a professional with all necessary skills, personality and sound 

knowledge in basic and advance technological areas. 

2. To promote understanding of concepts and develop ability in design manufacture and 

maintenance of aircraft, aerospace vehicles and associated equipment and develop application 

capability of the concepts sciences to engineering design and processes. 

3. Understanding the current scenario in the field of aeronautics and acquire ability to apply 

knowledge of engineering, science and mathematics to design and conduct experiments in the 

field of Aeronautical Engineering. 

4. To develop leadership skills in our students necessary to shape the social, intellectual, 

business and technical worlds. 
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 (AE)  

Roll No 

 

          

 

Time: 2 hours 30 min       Max. Marks: 70 

Answer Any Five Questions 
All Questions carries equal marks. 

*** 

1 
Write short notes on the following: 

(a) Types of vibration with examples 

(b) Harmonic analysis 

[8M] 

[6M] 

2 
(a) Consider a pendulum of length 1 unit and mass m kg, is restricted to one 

plane only. Derive natural frequency by: (i) Newtons second law of motion 

(ii) Energy method 

(b) Determine the natural frequency of the spring mass system considering the 

inertial effect of the spring. 

[8M] 

 

[6M] 

3 
(a) Derive the frequency response relation for a single degree of freedom system 

subjected to harmonic excitation. Also plot the frequency response diagram. 

(b) The damped natural frequency of a system is 10.5 Hz. When the system is 

subjected to a harmonic excitation the maximum amplitude of oscillations 

occurs at 9.5 Hz. Find the amplitude ratio when it is excited at 15 Hz 

frequency? 

[7M] 

 

 

[7M] 

4 

 

(a) Derive the frequency response relation for base excitation. 
(b) A vehicle of mass 400 kg, total spring constant of its suspension 500 N/cm 

and the damping factor 0.2 moves over.a road which may be approximatedtoa sine wave 

of amplitude 3 cm and wavelength 4m. Determine: 
i) the critical speed of the vehicle 

ii) the amplitude of the steady state motion at the critical speed and 

iii) the amplitude of the vehicle when it is driven at a speed 1.5 times more 

than the' critical speed. 

[6M] 

[8M] 

5 
(a) Derive the equations of motion for a two-rotor system and frequencyis 

evaluated from those equations. 

(b) Find the natural frequency of the two-rotor system shown in figure. Also 

locate the position of the node with respect to therotor A. G = 70 GPa. 

 

[7M] 

[7M] 

6 
Determine the equations of motion and the natural frequencies of the two 

degree freedom spring-mass system shown in figure below. 
 

[14M] 

R17 



 
 

7 
Using matrix iteration find the frequency of the system shown in the figure below: 

 

 

 

 

[14M] 

8 
Derive expression for governing differential equation for torsional vibration of circular or 
uniform shafts. 

[14M] 

 
********** 
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Time: 2 hours 30 min       Max. Marks: 75 

Answer Any Five Questions 
All Questions carries equal marks. 

 

1 Determine the natural frequency of system in figure 1 

 

Fig.1 

[15M] 

2 A body of 5 kg is supported on a spring of stiffness 200 N/m and has 

dashpot connected to it which produces a resistance of .002 N at 

the velocity of 1 cm/sec. In what ratio will thee amplitude of 

vibration to be reduced after 5 cycles. 

[15M] 

3 Discuss in detail about vibration measuring instrument Vibrometer and 

Accelerometer. 

[15M] 

4 A machine having a mass of 100 kg and supported on spring of 

total stiffness 7.84x105 N/m has a un unbalanced rotating element 

which results in disturbing force of 392 N at a speed of 3000 rpm. 

Assuming a damping factor equals to 0.20. 

(a)Determine amplitude of motion due to unbalance,   

(b) Transmissibility. 

[15M] 

5 Consider a double pendulum of length L1 =L2 =L. Determine the natural 

frequency of system k =100N/m, M1 =2Kg, M2= 5 kg  L=0.2m, a=0.1m as 

shown in figure 2. 

[15M] 

R15 



 

Fig.2 

6 Calculate the natural frequency of system of K1=40N/m , 

K2 = 60 N/m  M1= 2Kg , M2 = 5 kg as shown in figure 3. 

 

Fig.3 

[15M] 

7 Solve for the lowest natural frequency of the system by Rayleigh’s 

method E= 1.96X1011 N/m 2 , I=4X10 7m4 in figure 4. 

 

Fig.4 

[15M] 

8 Determine the frequency equation for a beam with both ends free having 

transverse vibrations. 

[15M] 

 ******  
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Answer Any Five Questions 
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****** 

1 Determine the effect of mass of spring on natural frequency of the system from figure1. 

 
Fig.1 

[15M] 

2 A vibratory system is defined by the following parameters m= 3 kg k=100 N/m C= 

3Nsec/m 

Determine  

a) Damping factor, 

b) The natural frequency of damped vibration 

c) Logarithmic decrement 

d) Ratio of two consecutive amplitude  

e) The number of cycles after which original amplitude is reduced to 20 percent.   

[15M] 

3 Derive the expression of total response of a vibratory system under harmonic force. [15M] 

4 A vibrating system having total mass 25 kg. A speed of 1000 rpm. The system and 

eccentric mass have a phase difference of 90 and the corresponding amplitude is 1.5 cm. 

The eccentric unbalanced mass of 1 kg has the radius of rotation 4 cm. Determine( a) 

the natural frequency of the system (b) the damping factor (c) the amplitude at 1500 

rpm (d)the phase angle at1500 rpm 

[15M] 

5 An Aerofoil wing in its first bending and torsional mode is shown in figure-2, 

Evaluate the equation of motion and obtain its natural frequency if M =5kg, I 

=0.12 kgm2 , K =5 x 103 N/m , 

KT = 0.4 x 103 Nm/rad, a=0.1m. 

 
Fig.2 

[15M] 

6 Calculate the natural frequency of system if K1 = 40 =K3  and  
K2 =60, m1 = m2=10Kg as shown in figure 3. 

[15M] 

R15 



 

 
Fig.3 

7 Determine the frequencies of system as shown in figure-4 by matrix method if M1 

=M2=M3 = 10 kg K1 = K2 =K3 = 5 N/m 

 
Fig.4 

 

[15M] 

8 Determine the frequency equation of torsional vibrations for a free-free shaft of length 
L. 

[15M] 

 ******  
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Time: 2 hours        Max. Marks: 75 

Answer Any Four Questions 
All Questions carries equal marks. 

 

1 Figure 1 shows a three-stepped shaft fixed at one end and subjected to a torsional momentT 
at the other end. The length of step i is and its diameter is Di, i = 1, 2, 3.All the steps 

aremade of the same material with shear modulus Gi= G, i = 1, 2, 3.Find the torsional 

spring constant (or stiffness) kti of step i (i = 1, 2, 3). Also find the equivalent torsional 

spring constant (or stiffness) of the stepped shaft, kteq, so thatT = kteqθ. 

 
Figure 1 

 

2 The maximum velocity attained by the mass of a simple harmonic oscillator is 10 cm/s, 

andthe period of oscillation is 2 s. If the mass is released with an initial displacement of 2 
cm,find (a) the amplitude, (b) the initial velocity, (c) the maximum acceleration, and (d) 

thephase angle. 

 

3 a) Find the frequency and amplitude of a single DOF system. 
b) A 40 kg mass hangs from a spring with a stiffness of 4 X 104 N/m. A harmonicforce with 

a magnitude of 120 rad/s is applied. Determine the amplitude of theforced response. 

 

4 a) Explain why vibration isolation is difficult at low speeds.  

b) A 5 kg block is mounted on a helical coil spring such that the system’s natural frequency 
is 50 rad/s. The block is subject to a harmonic excitation of amplitude 45 N at a frequency 

of 50.8 rad/s. What is the maximum displacement of the block from its equilibrium 

positions? 

 

5 Use the Duhamel’s integral method to derive expressions for the response of an undamped 

system subjected to the forcing function shown in figure 2. 

 
Figure 2 

 

6 a) How are the initial conditions determined for a single-degree-of-freedom system 
subjected to an impulse at t = 0? 

b) During operation, a 100 kg reciprocating machine is subject to a force F(t) = 200 sin 60t 

 



N. The machine is mounted on springs of an equivalent stiffness of 4.3 X 106 N/m. What is 

the machine’s steady-state amplitude? 

7 Find the flexibility and stiffness influence coefficients of the system shown in figure 3. 
Also, derive the equations of motion of the system. 

 
Figure 3 

 

8 A uniform bar of cross-sectional area A, length l, and Young s modulus E is connected at 

both endsby springs, dampers, and masses, as shown in figure 4. State the boundary 
conditions. 

 
Figure 4 

 

 ******  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M V Important Questions 
 

1] Figure shows a small mass ‘m’ restrained by four linearly elastic springs, each of which has an 

unstretched length l, and an angle of orientation of 45˚ with respect to the x-axis.Determine the 

equation of motion for small displacements of the mass in the x-direction. 

 

2] Find the natural frequency of the system shown in figure with and without the springs 𝑘1 and 𝑘2 in 

the middle of the elastic beam. 

 

3] A spring-mass system has a natural frequency of 10 Hz. When the spring constant is reduced by 800 

N/m, the frequency is altered by 45%. Find the mass and spring constant of the original system. 

4] Describe the basic concepts of vibration, classification of vibrations, and vibration analysis 

procedure. 

5] Explain the Response of an Undamped System Under Harmonic Force. 

6] A mass ‘m’ is suspended from a spring of stiffness 4000 N/m and is subjected to a harmonic force 

having amplitude of 100 N and a frequency of 5 Hz. The amplitude of the forced motion of the mass is 

observed to be 20 mm. find the value of ‘m’. 

7] Describe theForced Vibration with Coulomb Damping. 

8] Find the natural frequencies and the amplitude ratios of the system shown in figure. 

 



9] Determine the natural frequencies of the system shown in figure by assuming the rope passing over 

the cylinder does not slip. 

 
10] A two story building frame is modeled as shown in figure. The girders are assumed to be rigid and 

the columns have flexural rigidities EI1 and EI2, with negligible masses. The stiffness of each column 

can be computed as  

24EIi/ℎ𝑖
3,    i = 1, 2 

For m1 = 2m, m2 = m, h1 = h2 = h and EI1 = EI2 = EI, determine the natural frequencies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT-1 

FUNDAMENTALS OF VIBRATION 

 

Brief history of vibration  

 
The discovery of musical instruments such as drums, whistles etc. made the vibration known and more 

interesting to the scientists and engineers. It was known since long that sound is related to vibration; 

but no mathematical relation was available. Galileo (1564-1642), an Italian mathematician, studied the 

oscillations of strings and simple pendulum. He developed mathematical relationship between the 

length of a pendulum and its frequency and discussed the term resonance. The Galileo and Hooke’s 

developed relationship between the frequency and pitch of sound. 

Sir Isaac Newton (1642-1727), an English mathematician, made a lot of scientific contribution 

towards dynamics by introducing the definition of Forces, Mass, Momentum and three Laws of 

motion. 

Daniel Bernoulli (1700-1782) developed the equation of motion for vibrations of beams and studied 

the vibrating strings and discovered the principle of superposition of harmonics in free vibration. 

L. Euler (1707-1783) worked on the bending vibrations of a rod and studied the dynamics of a 

vibrating ring. J. B. J. Fourier (1768-1830) was a French mathematician who made valuable 

contribution to the development of vibration theory. He has shown that any periodic function can be 

represented by a series of sines and cosines. This work of Fourier helps in analysing the experimentally 

obtained vibration plots analytically. Lord Rayleigh (1842-1919), an English physicist, hascomputed 

the approximately natural frequencies of vibrating bodies using an energy approach. The method 

derived by him is useful in developing the equations of motion and the technique is known as 

Rayleigh’s method. 

A lot of work has been done in vibration by many authors. About thirty years back, the vibration 

analysis of complex multi-degree of freedom systems was very difficult. But now with the help of 

finite element method and other advanced techniques the engineers are able to use computers to 

conduct numerically detailed vibration analysis of complex mechanical systems even having thousands 

degree of freedom. 

 

Importance of the study of vibration 
Most human activities involve vibration in one form or other. Example, we hear because our eardrums 

vibrate and see because light waves undergo vibration. Breathing is associated with the vibration of 

lungs and walking involves (periodic) oscillatory motion of legs and hands. We speak due to the 

oscillatory motion of larynges (tongue). 

 

Similarly, the structures designed to support the high speed engines and turbines are subjected to 

vibration. Due to faulty design and poor manufacture there is unbalance in the engines which causes 

excessive and unpleasant stresses in the rotating system because of vibration. The vibration causes 

rapid wear of machine parts such as bearings and gears. Unwanted vibrations may cause loosening of 

parts from the machine. Because of improper design or material distribution, the wheels of locomotive 

can leave the track due to excessive vibration which results in accident or heavy loss. As we know that 

many buildings, structures and bridges fall because of vibration. If the frequency of excitation 

coincides with one of thenatural frequencies of the system, a condition of resonance ( by the 

synchronous vibration of a neighbouring object)is reached, and dangerously large oscillations may 

occur which may result in the mechanical failure of the system. Excessive vibration is dangerous for 



human beings. Thus keeping in view all these devasting effects, the study of vibration is essential for a 

Mechanical/Aeronautical/Design engineers to minimize the vibrational effects over mechanical 

components by designing them suitably. 

 
Thus, undesirable vibrations should be eliminated or reduced upto certain extent by the following 

methods: 

1] Removing external excitation, if possible. 

2] Using Shock absorbers. 

3] Dynamic Absorbers. 

4] Resting the system on proper vibration isolators. 

 

Basic Concepts of Vibration 
With the discovery of musical instruments like drums, the vibration became a point of interest for 

scientists and since then there has been much investigation in the field of vibration. All bodies having 

mass and elasticity are capable of vibration. The mass is inherent of the body and elasticity causes 

relative motion among its parts. When body particles are displaced by the application of external force, 

the internal forces in the form of elastic energy are present in the body. These forces try to bring the 

body to its original position. At equilibrium position, the whole of the elastic energy is converted into 

kinetic energy and body continues to move in the opposite direction because of it. The whole of the 

kinetic energy is again converted into elastic or strain energy due to which the body again returns to the 

equilibrium position. In this way, vibratory motion is repeated indefinitely and exchange of energy 

takes place. Thus, any motion which repeats itself after an interval of time is called vibration or 

oscillation.  

 

The swinging of simple pendulum as shown in fig. 1 is an example of vibration or oscillation as the 

motion of ball is to and fro from its mean position repeatedly.  

The main reasons of vibration are as follows:  

1. Unbalanced centrifugal force in the system. This is caused because of non-uniform material 

distribution in a rotating machine element. 

2. Elastic nature of the system. 

3. External excitation applied on the system. 

4. Winds may cause vibrations of certain systems such as electricity lines, telephone lines, etc. 

 
 

Classification of Vibrations  
Vibrations can be classified in several ways. Some of the important classifications are as follows: 

 



 
Free Vibration: If a system, after an initial disturbance, is left to vibrate on its own, the ensuing 

vibration is known as free vibration. No external force acts on the system. The oscillation of a simple 

pendulum is an example of free vibration.    

 
Forced Vibration: If a system is subjected to an external force, the resulting vibration is known as 

forced vibration. The oscillation that arises in machines such as diesel engines is an example of forced 

vibration. 

If the frequency of the external force coincides with one of the natural frequencies of the system, this 

condition is known as resonance and the system undergoes dangerously large oscillations. Failures of 

such structures as buildings, bridges, turbines and airplane wings have been associated with the 

occurrence of resonance.  

If no energy is lost or dissipated in friction or other resistance during oscillation, the vibration is known 

as undamped vibration. If any energy is lost in this way, on the other hand, it is called damped 

vibration. In many physical systems, the amount of damping is so small that it can be disregarded for 

most engineering purposes. However, consideration of damping becomes extremely important in 

analyzing vibratory systems near resonance. 

If all the basic components of a vibratory system – the spring, the mass and the damper – behave 

linearly, the resulting vibration is known as linear vibration, on the other hand, if any of the basic 

components behave non linearly, the vibration is called non linear vibration. The differential equations 

that govern the behaviour of linear and non linear vibratory systems are linear and non linear 

respectively. If the vibration is linear, the principle of superposition holds, and the mathematical 

techniques of analysis are well developed. For non linear vibration, the superposition principle is not 

valid, and techniques of analysis are less well known. Since all vibratory systems tend to behave non 

linearly with increasing amplitude of oscillation, a knowledge of non linearly vibration is desirable in 

dealing with practical vibratory systems. 

If the value of the excitation (force or motion) acting on a vibratory system is known at any given time, 

the excitation is called deterministic. The resulting vibration is known as deterministic vibration. In 

some cases, the excitation is non deterministic or random; the value of the excitation at a given time 

cannot be predicted.  

 
Vibration Analysis Procedure 

 
A vibratory system is a dynamic system for which the variables such as the excitations (inputs) and 

responses (output) are time-dependent. The response of vibrating system generally depends on the 

initial conditions as well as the external excitations. The analysis of a vibrating system usually involves 

mathematical modelling, derivation of the governing equations, solution of the equations, and 

interpretation of the results. 

Step 1] Mathematical Modelling:The purpose of mathematical modelling is to represent all the 

important features of the system for the purpose of deriving the mathematical (or analytical) equations 



governing the behaviour of the system. The mathematical model should include enough details to be 

able to describe the system in terms of equations without making it too complex. The mathematical 

model may be linear or non linear depending on the behaviour of the components of the systems. 

Sometimes the mathematical model is gradually improved to obtain most accurate results. 

 
Step 2] Derivation of Governing Equations: Once the mathematical model is available, we use the 

principles of dynamics and derive the equations that describe the vibration of the system. The 

equations are usually in the form of a set of ordinary differential equations for a discrete system and 

partial differential equations for a continuous system. The equations may be linear or non linear 

depending on the behaviour of the components of the system. Several approaches are commonly used 

to derive the governing equations. Among them are Newton’s second law of motion, d’Alembert 

principle and the principle of conservation of energy. 

 

Step 3] Solution of the Governing Equations: The equations of motion must be solved to find the 

response of the vibrating system. Depending on the nature of the problem, we can use one of the 

following techniques for finding the solution: standard methods of solving differential equations, 

Laplace transformation methods, matrix methods, and numerical methods. If the governing equations 

are non linear, they can seldom be solved in closed form. Further, the solution of partial differential 

equations is far more involved than that of ordinary differential equations. Numerical methods, using 

computers, can be used to solve the equations. However, it will be difficult to draw general conclusions 

about the behaviour of the system using computer results. 

 

Step 4] Interpretation of the Results: The solution of the governing equations gives the 

displacements, velocities and accelerations of the various masses of the system. These results must be 

interpreted with a clear view of the purpose of the analysis and the possible design implications of the 

results. 

 

Spring Elements 

 
A linear spring is a type of mechanical link which is generally assumed to have negligible mass and 

damping. A force is developed in the spring whenever there is relative motion between the two ends of 

the spring. The spring force is proportional to the amount of deformation and is given by 

F = - kx -------- (1) 

Where F is the spring force, x is the deformation (displacement of one end with respect to the other), 

and k is the spring stiffness or spring constant. The work done in deforming a spring is stored as strain 

or potential energy in the spring. 

 
Non linearity beyond proportionality limit 

 

 



Actual springs are nonlinear and follow equation 1 only up to certain deformation. Beyond a certain 

value of deformation (after point A in fig.), the stress exceeds the yield point of the material and the 

force-deformation relation becomes non linear. In many practical applications we assume the 

deflections to be small and make use of the linear relation in eq. 1. 

Even if the force-deflection relation of a spring is non linear, as shown in fig., we often approximate it 

as a linear one by using a linearization process. To illustrate the linearization process, let the static 

equilibrium load F acting on the spring cause a deflection of 𝑥∗. If an instrumental force ∆𝐹 is added to 

F, the spring deflects by an addition a quantity ∆𝑥.  𝑡ℎ𝑒 𝑛𝑒𝑤 𝑠𝑝𝑟𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 𝐹 + ∆𝐹 can be expressed 

using Taylor’s series expansion about the static equilibrium position 𝑥∗ as  

𝐹 + ∆𝐹 = F(𝑥∗ + ∆𝑥) = F(𝑥∗) + 
𝑑𝐹

𝑑𝑥
|(∆𝑥) +  

1

2!

𝑑2𝐹

𝑑𝑥2
|
𝑥∗
(∆𝑥)2 +  ---------(2) 

 
Linearization Process 

For small values of ∆𝑥, the higher order derivative terms can be neglected to obtain  

𝐹 + ∆𝐹 = F(𝑥∗ + ∆𝑥) = F(𝑥∗) + 
𝑑𝐹

𝑑𝑥
|𝑥∗(𝛥x) ---------(3) 

since 𝐹 = F(𝑥∗), we can express ∆𝐹 as  

∆𝐹 = k∆𝑥 ---------(4) 

where k is the linearized spring constant at 𝑥∗ given by, k = 
𝑑𝐹

𝑑𝑥
|𝑥∗ 

We may use equation 4 for simplicity, but sometimes the error involved in the approximation may be 

very large. 

Elastic elements like beams also behave as springs. For example, consider a cantilever beam with an 

end mass m, as shown in fig. 

 
 

We assume, for simplicity, that the mass of the beam is negligible in comparison with the mass m from 

strength of materials, we know that the static deflection of the beam at the free end is given by, 𝛿𝑠𝑡 =

 
𝑊𝑙3

3𝐸𝐼
 --------(5) 

where W = mg, is the weight of the mass m, E is the Young’s modulus and, I is the moment of inertia 

of the cross section of the beam. Hence the spring constant is  



k = 
𝑊

𝛿𝑠𝑡
=  

3𝐸𝐼

𝑙3
 ------- (6) 

Similar results can be obtained for beams with different end conditions. 

In many practical applications, several linear springs are used in combination, either in Series or in 

Parallel indicated below 

Case (i): Springs in Series: We consider two springs connected in series, as shown in fig. since both 

the springs are subjected to the same force W, we have for equilibrium  

W = 𝑘1𝛿1 

W = 𝑘2𝛿2 -------(7) 

Where 𝛿1 and 𝛿2 are the elongations of springs 1 and 2, respectively. As the total elongation is equal to 

the static deflection 𝛿𝑠𝑡. 

𝛿1 + 𝛿2 = 𝛿𝑠𝑡 --------(8) 

If 𝑘𝑒𝑞 denotes the equivalent spring constant, then for the same static deflection. 

W = 𝑘𝑒𝑞𝛿𝑠𝑡 ---------(9) 

Equations 7 and 9 gives 𝑘1𝛿1 = 𝑘2𝛿2  = 𝑘𝑒𝑞𝛿𝑠𝑡 

or 𝛿1 = 
𝑘𝑒𝑞𝛿𝑠𝑡  

𝑘1
 and 𝛿2 = 

𝑘𝑒𝑞𝛿𝑠𝑡  

𝑘2
  --------(10) 

Substituting these values of 𝛿1 and 𝛿2 into 8, we obtain 
𝑘𝑒𝑞𝛿𝑠𝑡  

𝑘1
 + 

𝑘𝑒𝑞𝛿𝑠𝑡  

𝑘2
 = 𝛿𝑠𝑡 

i.e. 
1

𝑘𝑒𝑞
 = 

1

𝑘1
 + 

1

𝑘2
 ------- (11) 

Equations 11 can be generalized to the case of n springs in series: 
1

𝑘𝑒𝑞
 = 

1

𝑘1
 + 

1

𝑘2
 + 

1

𝑘3
 -------- + 

1

𝑘𝑛
 --------(12) 

Case (ii): Springs in Parallel. Let the springs be parallel as shown in fig. if W is the weight of mass 

m, we have for equilibrium, W = 𝑘1𝛿𝑠𝑡 + 𝑘2𝛿𝑠𝑡-------(13) 

 
where 𝛿𝑠𝑡is the static deflection of the mass m. if 𝑘𝑒𝑞denotes the equivalent spring constant of the 

combination of the two springs, then for the same static deflection 𝛿𝑠𝑡, we have 

W = 𝑘𝑒𝑞𝛿𝑠𝑡 -------(14) 

Equation 13 and 14 give  

𝑘𝑒𝑞 = 𝑘1+ 𝑘2-------(15) 

In general, if we have n springs with spring constants 𝑘1, 𝑘2, ……., 𝑘𝑛 in parallel, then the equivalent 

spring constant 𝑘𝑒𝑞 can be obtained: 

𝑘𝑒𝑞 = 𝑘1 + 𝑘2 + ------ + 𝑘𝑛 --------(16) 

Mass or Inertia Elements 

The mass or inertia element is assumed to be a rigid body; it can gain or lose kinetic energy whenever 

the velocity of the body changes. From Newton’s second law of motion, the product of the mass and its 

acceleration is equal to the force applied to the mass. Work is equal to the force multiplied by the 

displacement in the direction of the force and the work done on a mass is stored in the form of kinetic  

 



energy of the mass. 

Generally, we uses a mathematical model to represent the actual vibrating system, and there are often 

several possible models. The purpose of the analysis often determines which mathematical model is 

appropriate. Once the model is chosen, the mass or inertia elements of the system can be easily 

identified. For example, consider the cantilever beam with a tip mass shown in fig. For a quick and 

reasonably accurate analysis, the mass and damping of the beam can be disregarded; the system can be 

modeled as a spring-mass system as shown in fig. The tip mass m represents the mass element, and the  

elasticity of the beam denotes the stiffness of the spring. Next, consider a multi-story building 

subjected to an earthquake. Assuming that the mass of the frame is negligible compared to the masses 

of the floors, the building can be modeled as a multi-degree of freedom system shown in fig. The 

masses at the various floor levels represent the mass elements, and the elasticities of the 

verticalmembers denote the spring elements.  

 
Few Practical Applications: 

Case (i): Translational Masses Connected by a Rigid Bar. Let the masses be attached to a rigid bar 

that is pivoted at one end, as shown in fig. The equivalent mass can be assumed to be located at any 

point along the bar. To be specific, we assume the location of the equivalent mass to be that of mass 

𝑚1. The velocities of masses 𝑚2(𝑥̇2) and 𝑚3(𝑥̇3) can be expressed in terms of the velocity of mass 

𝑚1(𝑥̇1), by assuming small angular displacements for the bar, as 

𝑥̇2 = 
𝑙2

𝑙1
𝑥̇1, 𝑥̇3 = 

𝑙3

𝑙1
𝑥̇1------- (17) 

and        𝑥̇𝑒𝑞 = 𝑥̇1-------(18) 

 
By equating the kinetic energy of the three mass system to that of the equivalent mass system, we 

obtain 

 



1

2
𝑚1𝑥̇1

2 + 
1

2
𝑚2𝑥̇2

2 + 
1

2
𝑚3𝑥̇3

2 = 
1

2
𝑚𝑒𝑞𝑥̇𝑒𝑞

2 -------(19) 

This equation gives, in view of equation 17 and 18, 

𝑚𝑒𝑞 = 𝑚1+ (
𝑙2

𝑙1
)2𝑚2 + (

𝑙3

𝑙1
)2𝑚3-------- (20) 

Case (ii): Translational and Rotational Masses Coupled Together. Let a mass m having a 

traditional velocity 𝑥̇be coupled to another mass (of mass moment of inertia 𝐽0) having a rotational 

velocity 𝜃̇, as in the rack and pinion arrangement shown in fig. These two masses can be combined to 

obtain either 1) a single equivalent translational mass 𝑚𝑒𝑞 or 2) a single equivalent rotational mass 𝐽𝑒𝑞 , 

as shown below. 

1. Equivalent translational mass. The kinetic energy of the two  

masses is given by  

T = 
1

2
𝑚𝑥̇2 +  

1

2
𝐽0𝜃̇

2-------(21) 

And the kinetic energy of the equivalent mass can be expressed as 

𝑇𝑒𝑞 =  
1

2
𝑚𝑒𝑞𝑥̇𝑒𝑞

2 --------(22) 

 
Translational and rotational masses in a rack and pinion arrangement 

Since 𝑥̇𝑒𝑞 =  𝑥̇ and 𝜃̇ =  
𝑥̇

𝑅
, the equivalence of T and 𝑇𝑒𝑞 gives  

1

2
𝑚𝑒𝑞𝑥̇

2 = 
1

2
𝑚𝑥̇2 +  

1

2
𝐽0(

𝑥̇

𝑅
)2 

that is ,                                                 𝑚𝑒𝑞 = 𝑚 +  
𝐽0

𝑅2
------- (23) 

2. Equivalent rotational mass. Here 𝜃̇𝑒𝑞 =  𝜃̇ and 𝑥̇ = 𝜃̇𝑅, and the equivalence of T and 𝑇𝑒𝑞 leads to 
1

2
𝐽𝑒𝑞𝜃̇

2 = 
1

2
𝑚(𝜃̇𝑅)2 +  

1

2
𝐽0𝜃̇

2 

𝐽𝑒𝑞  = 𝐽0 + 𝑚𝑅2-------(24) 

 

Damping Elements 

 

In many practical systems, the vibrational energy is gradually converted to heat or sound. Due to the 

reduction in the energy, the response, such as the displacement of the system gradually decreases. The 

mechanism by which the vibrational energy is gradually converted into heat or sound is known as 

Damping. Although the amount of energy converted into heat or sound is relatively small, the 

consideration of damping becomes important for an accurate prediction of the vibration response of a 

system. A damper is assumed to have neither mass nor elasticity, and damping force exists only if there 

is relative velocity between the two ends of the damper. It is difficult to determine the causes of 

damping in practical systems. Hence damping is modeled as one or more of the following types. 

 

 



Viscous Damping: It is the most commonly used damping mechanism in vibration analysis. When 

mechanical systems vibrate in a fluid medium such as air, gas, water, and oil, the resistance offered by 

the fluid to the moving body causes energy to be dissipated. In this case, the amount of dissipated 

energy depends on many factors, such as the size and shape of the vibrating body, the viscosity of the 

fluid, the frequency of vibration, and the velocity of the vibrating body. In viscous damping, the 

damping force is proportional to the velocity of the vibrating body. Typical examples of viscous 

damping include (1) fluid film between sliding surfaces. (2) fluid flow around a piston in a cylinder. 

(3) fluid flow through an orifice, and (4) fluid film around a journal in a bearing. 

 

Coulomb or Dry Friction Damping: Here the damping force is constant in magnitude but opposite in 

direction to that of the motion of the vibrating body. It is caused due to friction between rubbing 

surfaces that are either dry or have insufficient lubrication. 

 

Material or Solid or Hysteretic Damping: When materials are deformed, energy is absorbed and 

dissipated by the material. The effect is due to friction between the internal planes, which slip or slide 

as the deformations take place. When a body having material damping is subjected to vibration, the 

stress-strain diagram shows a hysteresis loop as shown in fig. the area of this loop dented the energy 

lost per cycle due to damping. 

 
Hysteresis loop for elastic material 

 

Definitions 

 

Periodic Motion: A motion which repeats itself after equal intervals of time. 

 

Time Period: Time taken to complete one cycle. 

 

Frequency: Number of cycles per unit time. 

 

Amplitude: The maximum displacement of a vibrating body from its equilibrium position. 

 

Natural Frequency: when no external force acts on the system after giving it an initial displacement, 

the body vibrates. These vibrations are called free vibrations and their frequency as natural frequency. 

It is expressed in rad/sec or Hertz. 

 

Fundamental Mode of Vibration: The fundamental mode of vibration of a system in the mode 

having the lowest natural frequency. 

 

 



Degree of Freedom: The minimum number of independent coordinates required to specify the motion 

of a system at any instant is known as degrees of freedom of the system.In general, it is equal to the 

number of independent displacements that are possible. The one, two and three degrees of freedom 

systems are shown in figure. 

 
 

Simple Harmonic Motion: The motion of a body to and fro about a fixed point is called simple 

harmonic motion. The motion is periodic, and its acceleration is always directed towards the mean 

position and is proportional to its distance from mean position. 

Let a body having simple harmonic motion is represented by the equation 

x = A sin𝜔𝑡 --------(1) 

𝑥̇ = A𝜔 𝑐𝑜𝑠𝜔𝑡 -------(2) 

𝑥̈ =  - A𝜔2𝑠𝑖𝑛𝜔𝑡 --------(3) 

or 𝑥̈ = - 𝜔2𝑥 --------(4) 

where x, 𝑥̇ and  𝑥̈ represent the displacement, velocity and acceleration of the body respectively. 

 

Phase Difference: Suppose there are two vectors 𝑥1and 𝑥2having frequencies 𝜔rad/sec each. The 

vibrating motions can be expressed as                                                          

𝑥1 =  𝐴1 𝑠𝑖𝑛𝜔𝑡 

𝑥2 =  𝐴2 sin⁡(𝜔𝑡 +  ∅) ------(5) 

 

Resonance: When the frequency of external excitation is equal to the natural frequency of a vibrating 

body, the amplitude of vibration becomes excessively large. This concept is known as resonance. 

 

Mechanical Systems: The systems consisting of mass, stiffness and damping are known as mechanical 

systems. 

 

Methods of Vibration Analysis 

Some of the methods of vibration analysis are discussed here; 

 

Energy Method: 

According to this method the sum of the energies associated with the system is constant; 

i.e., Kinetic Energy + Potential Energy = Constant, or (K.E. + P.E.) = Constant  
𝑑

𝑑𝑡
(
1

2
𝑚𝑥̇2 +  

1

2
𝑘𝑥2) = 0 

m𝑥̇𝑥̈ + 𝑘𝑥𝑥̇ = 0 

or m𝑥̈ + kx = 0 ---------(6) 

 

This is the equation of motion. 



If the motion is simple harmonic given as, 

x = A sin 𝜔𝑡 

So, 𝑥̈ = - A 𝜔2 sin 𝜔𝑡 

Then - mA 𝜔2 sin 𝜔𝑡 + kA sin 𝜔𝑡 = 0 ---------(7) 

Thus, 𝜔 =  √
𝑘

𝑚
 rad/sec, or f = 

1

2𝜋
√

𝑘

𝑚
 Hz -------(8) 

 

Rayleigh’s Method: This method is the extension of energy method. The method is based on the 

principle that the total energy of a vibrating system is equal to the maximum potential energy. 

At any moment total energy is either the kinetic energy or potential energy or the sum of the both. Let 

us say that the total energy is kinetic energy which is expressed as, 

(𝐾. 𝐸. )𝑚𝑎𝑥 = (
1

2
𝑚𝑥̇2)𝑚𝑎𝑥 = 

1

2
𝑚(𝜔𝐴)2 

(𝑃. 𝐸. )𝑚𝑎𝑥 = (
1

2
𝑘𝑥2)𝑚𝑎𝑥 = 

1

2
𝑘𝐴2 

So, 𝑚(𝜔𝐴)2 = 𝑘𝐴2 

𝑚𝜔2 = k 

𝜔 = √
𝑘

𝑚
 = 

1

2𝜋
√

𝑘

𝑚
 Hz --------(9) 

 

Equilibrium Method: According to this method the algebraic sum of the forces and moments acting 

on the system must be zero. If the external force acting on the system is F, spring force kx, damping 

force c𝑥̇ and inertia force m𝑥̈, then the equation of motion can be written as  

m𝑥̈ + c𝑥̇ +kx = F --------(10) 

 

FREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS 

 

Introduction 

Figure shows a spring-mass system that represents the simplest possible vibratory system. It is called a 

single degree of freedom system, since one coordinate (x) is sufficient to specify the position of the 

mass at any time. There is no external force applied to the mass; hence the motion resulting from an 

initial disturbance will be a free vibration. Since there is no element that causes dissipation of energy 

during the motion of the mass, the amplitude of motion remains constant with time; it is an undamped 

system.  

In actual practice, except in a vacuum, the amplitude of free vibration diminishes gradually over time, 

due to the resistance offered by the surrounding medium (like air). Such vibrations are said to be 

damped. 

 
 

 

Spring-mass System in Horizontal Position: Consider the undamped single degree of freedom 



system shown in figure (previous slide). The mass supported on frictionless rollers and can have 

translatory motion in the horizontal direction. The unstretched length of the spring is 𝑙0. Let the mass 

be displaced a distance +x from its rest position. This results in a spring force kx, as shown in figure. 

Newton’s second law states that,  mass X acceleration = Resultant force on the mass ------(1) 

The applications of equation 1 to the mass m yields the equation of motion, 

m𝑥̈ = - kx 

or, m𝑥̈ + kx = 0 -------(2) 

Where𝑥̈ = 
𝑑2𝑥

𝑑𝑡2
 is the acceleration of the mass. 

 

Spring-mass System in Vertical Position: Consider the configuration of the spring-mass system 

shown in figure (in next slide). The mass hangs at the lower end of a spring, which in turn is attached 

to a rigid support at its upper end. At rest the mass will hang in a position called the static equilibrium 

position, in which the upward spring force exactly balances the downward gravitational force on the 

mass. In this position the length of the spring is 𝒍𝟎 + 𝜹𝒔𝒕, where 𝜹𝒔𝒕 is the static deflection – the 

elongation due to the weight W of the mass m. from figure, we find that, forstatic equilibrium,              

W = mg = k𝛿𝑠𝑡 -------(3) 

Where g, is the acceleration due to gravity. Let the mass be deflected a distance +x; from its static 

equilibrium position; thenthe spring force is – k(x + 𝜹𝒔𝒕), as shown in figure. The applicationof 

Newton’s second law of motion to the mass m gives 

m𝑥̈ = – k(x + 𝛿𝑠𝑡) + W 

and since k𝛿𝑠𝑡= W, we obtain 

m𝑥̈ + kx = 0 --------(4) 

Equations 2 and 4 are identical. This indicates that when a mass moves in a vertical direction, we can 

ignore its weight, provided we measure x from its static equilibrium position. 

 
 

 

 

Equation 2 can also be derived by using the conservation of energy principle. To apply this principle, 



first note that the system shown in figure is conservative, since there is no energy dissipation due to 

damping. During vibration, the energy of the system is partly kinetic and partly potential. The kinetic 

energy T is stored in the mass by virtue of its velocity, and the potential energy U is stored in the 

spring by virtue of its elastic deformation. Due to the conservation of energy, we have 

T + U = constant 

or 
𝑑

𝑑𝑡
(𝑇 + 𝑈) = 0 --------(5) 

The kinetic and potential energies are given by  

T = 
1

2
𝑚𝑥̇2 ---------(6) 

and U = 
1

2
k𝑥2 --------- (7) 

Substitutions of equation 6 and 7 into equation 5 yields the desired equation 

m𝑥̈ + kx = 0 ------(2) 

The solution of equation 2 can be found by assuming  

x(t) = C𝑒𝑠𝑡 -------- (8) 

where C and s are constants to be determined. Substitution of equation 8 into equation 2 gives  

C(m𝑠2 + k) = 0 

Since C cannot be zero, we have 

m𝑠2 + k = 0 ------(9) 

And hence,                                    s = ±(−
𝑘

𝑚
)1/2 = ±𝑖𝜔𝑛 -------- (10) 

where i = (−1)1/2 and, 

𝜔𝑛 =  (
𝑘

𝑚
)1/2 ----------(11) 

Equation 9 is called the auxiliary or the characteristic equation corresponding to the differential 

equation 2. the two values of s given by equation 10 are the roots of the characteristic equation, also 

known as the eigen values or the characteristic values of the problem. Since both values of s satisfy 

equation 9, the general solution of equation 2 can be expressed as  

x(t) = 𝐶1𝑒
𝑖𝜔𝑛𝑡 + 𝐶2𝑒

−𝑖𝜔𝑛𝑡 --------(12) 

where 𝐶1and 𝐶2 are constants. By using the identities 

𝑒±𝑖𝛼𝑡  = cos 𝛼𝑡 ± 𝑖 sin 𝛼𝑡 

Equation 12 can be written as x(t) = 𝐴1 cos𝜔𝑛𝑡 + 𝐴2 sin 𝜔𝑛𝑡 --------(13) 

where 𝐴1 and 𝐴2 are new constants. The constants 𝐶1 and 𝐶2 or 𝐴1and 𝐴2 can be determined from the 

initial conditions of the system. If the values of displacement x(t) and velocity 𝑥̇(t) = 
𝑑𝑥

𝑑𝑡
(𝑡) are 

specified as 𝑥0 and 𝑥0̇ at t = 0, we have, from equation 13, 

x(t = 0) = 𝐴1 = 𝑥0 

𝑥̇(t = 0) = - 𝜔𝑛𝐴2 = 𝑥0̇ ---------(14) 

Hence, 𝐴1 = 𝑥0 and 𝐴2 = 
𝑥̇0

𝜔𝑛
. Thus, the solution of equation 2 subject to the initial conditions of 

equations 14 is given by 

x(t) = 𝑥0cos 𝜔𝑛𝑡 + 
𝑥̇0

𝜔𝑛
 sin 𝜔𝑛𝑡 --------(15) 

Equations 12, 13 and 15 are harmonic functions of time. The motion is symmetric about the 

equilibrium position of the mass m. The velocity is a maximum and the acceleration is zero each time 

the mass passes through this position. At the extreme displacements the velocity is zero and the 

acceleration is a maximum. Since this represents simple harmonic motion, the spring-mass system 

itself is called a harmonic oscillator. The quantity 𝜔𝑛, given by 11, represents the natural frequency of 

vibration of the system. 

 

 

Equation 13 can be expressed in a different form by introducing the notation 



𝐴1 = 𝐴 cos∅ 

𝐴2 = 𝐴 sin∅ --------(16) 

Where A and ∅ are the new constants which can be expressed in terms of 𝐴1 and 𝐴2 as 

𝐴 =  (𝐴1
2 +  𝐴2

2)1/2 = [𝑥0
2 +  (

𝑥̇0

𝜔𝑛
)2]1/2 = Amplitude 

∅ =  tan−1(
𝐴2

𝐴1
) = tan−1(

𝑥̇0

𝑥0𝜔𝑛
) = Phase angle --------(17) 

Introducing equation 16 into 13, the solution can be written as  

x(t) = A cos (𝜔𝑛𝑡 −  ∅) -------- (18) 

Note the following aspects of the spring-mass system: 

 

1] If the spring-mass system is in a vertical position, the circular natural frequency can be expressed as 

𝜔𝑛 =  (
𝑘

𝑚
)1/2 --------(19) 

The spring constant k can be expressed in terms of the mass m from equation 19 as  

k = 
𝑊

𝛿𝑠𝑡
=  

𝑚𝑔

𝛿𝑠𝑡
 --------(20) 

Substitution of equation 20 into 11 yields, 

𝜔𝑛 =  (
𝑔

𝛿𝑠𝑡
)1/2 --------(21) 

Hence the natural frequency in cycles per second and the natural period are given by, 

𝑓𝑛 =  
1

2𝜋
(
𝑔

𝛿𝑠𝑡
)1/2 ---------(22) 

𝜏𝑛 =  
1

𝑓𝑛
= 2𝜋(

𝑔𝑠𝑡

𝑔
)1/2 --------(23) 

Thus, when the mass vibrate in a vertical direction. We can compute the natural frequency and the 

period of vibration by simply measuring the static deflection 𝛿𝑠𝑡. It is not necessary that we know the 

spring stiffness k and the mass m. 

 

2] from equation 18, the velocity 𝑥̇(𝑡) and the acceleration 𝑥̈(t) of the mass m at time t can be obtained 

as; 

𝑥̇(𝑡) = 
𝑑𝑥

𝑑𝑡
(𝑡) = - 𝜔𝑛𝐴 sin(𝜔𝑛𝑡 −  ∅) = 𝜔𝑛𝐴 cos(𝜔𝑛𝑡 −  ∅ +  

𝜋

2
) 

𝑥̈(t) = 
𝑑2𝑥

𝑑𝑡2
(𝑡) = − 𝜔𝑛

2𝐴 cos(𝜔𝑛𝑡 −  ∅) = 𝜔𝑛
2𝐴 cos(𝜔𝑛𝑡 −  ∅ +  𝜋) --------(24) 

Equation 24 shows that the velocity leads the displacement by 
𝜋

2
 and the acceleration leads the 

displacement by 𝜋. 

 

3] if the initial displacement (𝑥0) is zero, equation 24 becomes  

x(t) = 
𝑥̇0

𝜔𝑛
cos (𝜔𝑛𝑡 −  

𝜋

2
) =  

𝑥̇0

𝜔𝑛
𝑠𝑖𝑛(𝜔𝑛𝑡) ---------(25) 

On the other hand, if the initial velocity (𝑥̇0) is zero, the solution becomes; 

x(t) = 𝑥0𝑐𝑜𝑠𝜔𝑛𝑡 --------(26) 

 

Problem] Determine the natural frequency of the system shown in figure. Assume the pulleys to be 

frictionless and of negligible mass. 

 

Solution: since the pulleys are frictionless and massless, the tension in the rope is constant and is equal 

to the weight W of the mass m. thus, the upward force acting on pulley 1 is 2W, and the downward 

force acting on pulley 2 is 2W. The center of pulley 1 moves up by a distance 2W/ 𝑘1 and the center of 

pulley 2 moves down by 2W/𝑘2. Thus, the total movements of the mass m is; 

2(
2𝑊

𝑘1
+  

2𝑊

𝑘2
) 



 

 
as the rope on either side of the pulley is free to move the mass downward. If 𝑘𝑒𝑞 denotes the 

equivalent spring constant of the system;  
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑠𝑠

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑝𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
 = net displacement of the mass 

𝑊

𝑘𝑒𝑞
 = 4𝑊 (

1

𝑘1
+  

1

𝑘2
) = 

4𝑊(𝑘1+ 𝑘2)

𝑘1𝑘2
 

𝑘𝑒𝑞 = 
𝑘1𝑘2

4(𝑘1+ 𝑘2)
 

If the equation of motion of the mass is written as  

m𝑥̈ + 𝑘𝑒𝑞x = 0 

The natural frequency is given by  

𝜔𝑛 =  (
𝑘𝑒𝑞

𝑚
)1/2 = (

𝑘1𝑘2

4𝑚(𝑘1+ 𝑘2)
)1/2 rad/sec 

or, 𝑓𝑛 =  
𝜔𝑛

2𝜋
=  

1

4𝜋
[

𝑘1𝑘2

𝑚(𝑘1+ 𝑘2)
]1/2 cycles/sec 

 

Free Vibration of an Undamped Torsional System 

 

If a rigid body oscillates about a specific reference axis, the resulting motion is called. torsional 

vibration. In this case displacement of the body is measured in terms of an angular coordinate. In a 

torsional vibration problem, the restoring moment may be due to the torsion of an elastic member or to 

the unbalanced moment of a force or couple.  

Figure shows a disc, which has a polar mass moment of inertia𝐽0, mounted at one end of solid circular 

shaft, the other end of which is fixed. Let the angular rotation of the disc about the axis of the shaft be 

𝜃; 𝜃also represents the angle of twist of the shaft. From the theory of torsion of circular shafts, we have 

the relation 

𝑀𝑡 =  
𝐺𝐽𝜃

𝑙
 --------(27) 

Where𝑀𝑡 is the torque that produces the twist 𝜃, G is the shear modulus, l is the length of the shaft, J is 

the polar moment of inertia of the cross section of the shaft given by 

J = 
𝜋𝑑4

32
 --------(28) 

And d is the diameter of the shaft. If the disc is displaced by 𝜃 from its equilibrium position, the shaft 

provides a restoring torque of magnitude𝑀𝑡. Thus the shaft acts as a torsional spring with a torsional 

spring constant. 

𝑘𝑡 = 
𝑀𝑡

𝜃
=  

𝐺𝐽

𝑙
=  

𝜋𝐺𝑑4

32𝑙
 ------- (29) 

 



 
 

The equation of angular motion of the disc about its axis can be derived by using Newton’s second law 

or the principle of conservation of energy. By considering the free body diagram of the disc, we can 

derive the equation of motion by applying Newton’s second law of motion: 

𝐽0𝜃̈ + 𝑘𝑡𝜃 = 0 --------(30) 

Which can be seen to be identical to equation 2 if the polar mass moment of inertia 𝐽0 the angular 

displacement 𝜃, and the torsional spring constant 𝑘𝑡 are replaced by the mass m, the displacement x, 

and the linear spring constant k, respectively. Thus the natural circular frequency of the torsional 

system is; 

𝜔𝑛 =  (
𝑘𝑡

𝐽0
)1/2 -------(31) 

And the period and natural frequency of vibration in cycles per second are  

𝜏𝑛 = 2𝜋(
𝐽0

𝑘𝑡
)1/2 --------(32) 

𝑓𝑛 =
1

2𝜋
(
𝑘𝑡

𝐽0
)1/2 ---------(33) 

 

Problem] Any rigid body pivoted at a point other than its center of mass will oscillate about the pin 

point under its own gravitational force. Such a system is known as a compound pendulum (as shown in 

figure). Find the natural frequency of such a system. 

Solution: Let O be the point of superposition and G be the center of mass of the compound pendulum, 

as shown in figure. Let the rigid body oscillate in the xy plane so that coordinate 𝜃 can be used to 

describe its motion. Let d denote the distance between O and 𝐽0 the mass moment of inertia of the body 

about the z-axis (perpendicular to both x and y). For a displacement 𝜃, the restoring torque (due to the 

weight of the body W) (W d sin𝜃) and the equation of motion is  

𝐽0𝜃̈ + 𝑊𝑑 𝑠𝑖𝑛𝜃 = 0 --------(34) 

For a small angles of oscillation, sin 𝜃 =  𝜃, hence equation can be expressed as 

 
 



𝐽0𝜃̈ + 𝑊𝑑 𝜃 = 0 --------(35) 

This gives the natural frequency of the compound pendulum: 

𝜔𝑛 =  (
𝑊𝑑

𝐽0
)1/2 =  (

𝑚𝑔𝑑

𝐽0
)1/2 --------(36) 

Comparing equation 36 with the natural frequency of a simple pendulum, 𝜔𝑛 = (𝑔/𝑙)1/2, we can find 

the length of the equivalent simple pendulum: 

𝑙 =  
𝐽0

𝑚𝑑
 --------- (37) 

If 𝐽0 is replaced by 𝑚𝑘0
2 where 𝑘0 is the radius of gyration of the body about O, equation 36 and 37 

becomes 

𝜔𝑛 =  (
𝑔𝑑

𝑘0
2)

1/2 --------(38) 

𝑙 = (
𝑘0
2

𝑑
) --------- (39) 

If 𝑘𝐺 denotes the radius of gyration of the body about G, we have  

𝑘0
2 = 𝑘𝐺

2 + 𝑑2 ------- (40) 

and equation 39 becomes, 

𝑙 = (
𝑘𝐺
2

𝑑
+ 𝑑)--------(41) 

If the line OG is extended to point A such that  

𝐺𝐴 =  
𝑘𝐺
2

𝑑
  ------- (42) 

Equation 41 becomes,                         𝑙 = 𝐺𝐴 + 𝑑 = 𝑂𝐴 -------- (43) 

Hence, from equation 35, 𝜔𝑛 is given by,  

𝜔𝑛 =  {
𝑔

𝑘0
2/𝑑

}1/2 =  (
𝑔

𝑙
)1/2 = (

𝑔

𝑂𝐴
)1/2 ------- (44) 

This equations shows that, no matter whether the body is pivoted from O and A, its natural frequency 

is the same. The point A is called the center of percussion. 

 

Problem Based on Unit 1 

 

1] A spring-mass system has a natural period of 0.21 sec. what will be the new period if the spring 

constant is (i) increased by 50% and (ii) decreased by 50%? 

 

2] A spring-mass system has a natural frequency of 10 Hz. When the spring constant is reduced by 800 

N/m, the frequency is altered by 45%. Find the mass and spring constant of the original system. 

 

3] Three springs and a mass are attached to a rigid, weightless, bar PQ as shown in figure. Find the 

natural frequency of vibration of the system. 

 
 

 



4] Find the natural frequency of vibration of a spring-mass system arranged on an inclined plane, as 

shown in figure. 

 
5] Find the natural frequency of the system shown in figure with and without the springs 𝑘1 and 𝑘2 in 

the middle of the elastic beam. 

 
6] Find the natural frequency of the pulley system shown in figure by neglecting the friction and the 

masses of the pulleys. 

 
 

7] A rigid block of mass M is mounted on four elastic supports as shown in figure. A mass m drops 

from a height l and adheres to the rigid block without rebounding. If the spring constant of each elastic 

support is k, find the natural frequency of vibration of the system (a) without the mass m, and (b) with 

the mass m. Also, find the resulting motion of the system in case (b). 

 
 

8] Derive the expression for the natural frequency of the system shown in figure. Note that the load W 

is applied at the tip of beam 1 and midpoint of beam 2. 



 
9] The natural frequency of a spring-mass system is found to be 2 Hz. When an additional mass of 1 kg 

is added to the original mass m, the natural frequency is reduced to 1 Hz. Find the spring constant k 

and the mass m. 

 
10] Four weightless rigid links and a spring are arranged to support a weight W in two different ways 

as shown in figure. Determine the natural frequencies of vibration of the two arrangement. 

 
 

11]  Figure shows a small mass ‘m’ restrained by four linearly elastic springs, each of which has an 

unstretched length l, and an angle of orientation of 45˚ with respect to the x-axis. Determine the 

equation of motion for small displacements of the mass in the x-direction.   

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT-2 

 

HARMONICALLY EXITED VIBRATIONS 
 

Introduction 

 

A dynamic system is often subjected to some type of external force or excitation, called the forcing or 

exciting function. This excitation is usually time-dependent. It may be harmonic, non-harmonic but 

periodic, non-periodic, or random in nature. The response of a system to a harmonic excitation is 

called harmonic response. The non-periodic excitation may have a long or short duration. The response 

of a dynamic system to suddenly applied non-periodic excitations is called transient response. 

 

Let us suppose the dynamic response of a single degree of freedom system under harmonic excitations 

of the form F(t) = 𝐹0𝑒
𝑖(𝜔𝑡+ ∅) or F(t) = 𝐹0 cos(𝜔𝑡 +  ∅) or F(t) = 𝐹0 Sin(𝜔𝑡 +  ∅), where 𝐹0 is the 

amplitude, 𝜔 is the frequency, and ∅ is the phase angle of the harmonic excitation. The value of ∅ 

depends on the value of F(t) at t = 0 and is usually taken to be zero. Under a harmonic excitation, the 

response of the system will also be harmonic. If the frequency of excitation coincides with the natural 

frequency of the system, the response of the system will be very large. This condition, known as 

resonance, is to be avoided to prevent failure of the system. 

 

Equation of Motion 

 

If a force F(t) acts on a viscosity damped spring-mass system as shown in figure. The equation of 

motion can be obtained using Newton’s second Law: 

 
m𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝐹(𝑡) -------(1) 

Since this equation is homogeneous, its general solution x(t) is given by the sum of the homogeneous 

solution, 𝑥ℎ(𝑡), and the particular solution, 𝑥𝑝(𝑡). 

The homogeneous solution, which is the solution of the homogeneous equation;  

m𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 0 ---------(2) 

represents the free vibration of the system. This free vibration dies out with time under each of the 

three possible conditions of damping (underdamping, critical damping and overdamping), and under all 

possible initial conditions. Thus, the general solution of equation 1 eventually reduces to the particular 

solution 𝑥𝑝(𝑡), which represents the steady-state vibration. The steady-state motion is present as long 

as the forcing function is present. The vibrations of homogeneous, particular, and general solutions 

with time for a typical case are shown in figure 2. it can be seen that 𝑥ℎ(𝑡) dies out and x(t) becomes 

𝑥𝑝(𝑡) after some time (𝜏 in figure 2). The part of the motion that dies out due to damping (the free 

vibration part) is called transient. The rate at which the transient motion decays depends on the values 

of the system parameters k, c, and m. 

Response of an Undamped System under Harmonic Force 



First we consider an undamped system subjected to a harmonic force, for the sake of simplicity. If a 

force F(t) = 𝐹0𝑐𝑜𝑠𝜔𝑡 acts on the mass m of an undamped system, the equation of motion is,  

𝑚𝑥 +  ̈ kx = 𝐹0𝑐𝑜𝑠𝜔𝑡 ------- (3) 

The homogeneous solution of this equation is given by, 

𝑥ℎ(𝑡) ≈  𝐶1𝑐𝑜𝑠𝜔𝑛𝑡 +  𝐶2𝑠𝑖𝑛𝜔𝑛𝑡 ------- (4) 

where 𝜔𝑛 =  (𝑘/𝑚)1/2 is the natural frequency of the system. Because the exciting force F(t) is 

harmonic, the particular solution 𝑥𝑝(𝑡) is also harmonic and has the same frequency 𝜔. Thus, we 

assume a solution in the form  

𝑥𝑝(𝑡) = X𝑐𝑜𝑠𝜔𝑡 -------(5) 

where X is a constant that denotes the maximum amplitude of 𝑥𝑝(𝑡). By substituting equation 5 into 3 

and solving for X, we obtain, 

Case 1. when 0 <𝜔/𝜔𝑛< 1, the denominator in equation 10 is positive and the response is given by 

equation 5 without change. The harmonic response of the system 𝑥𝑝(𝑡)is said to be in phase with the 

external force as shown in figure. 

 

Case 2. when 𝜔/𝜔𝑛> 1, the denominator in equation 10 is negative, and the steady-state solution can 

be expressed as  𝑥𝑝(𝑡) = - Xcos𝜔𝑡 -------- (11) 

where the amplitude of motion X is redefined to be a positive quantity as  

X = 
𝛿𝑠𝑡

(
𝜔

𝜔𝑛
)2 −1

 ------ (12) 

The variations of F(t) and 𝑥𝑝(𝑡)with time are shown in figure. Since 𝑥𝑝(𝑡)and F(t) have opposite signs, 

the response is said to be 180˚ out of phase with the external force. Further, as 𝜔/𝜔𝑛 → 𝛼, X → 0. thus, 

the response of the system to a harmonic force of very high frequency is close to zero. 

 

Case 3. when 𝜔/𝜔𝑛 → 1, the amplitude X given by equation 10 or 12 becomes infinite. The condition, 

for which the forcing frequency 𝜔is equal to the natural frequency of the system 𝜔𝑛, is called 

resonance. To find the response for this 

  

 

condition. We rewrite equation as  

x(t) = 𝑥0𝑐𝑜𝑠𝜔𝑛𝑡 + 
𝑥̇0

𝜔𝑛
𝑠𝑖𝑛𝜔𝑛𝑡 +  𝛿𝑠𝑡[

𝑐𝑜𝑠𝜔𝑡 −𝑐𝑜𝑠𝜔𝑛𝑡

1 − (
𝜔

𝜔𝑛
)2

] -------- (13) 

Since the last term of the equation takes an indefinite form for 𝜔 = 𝜔𝑛, we apply L-Hospital’s rule to 

evaluate the limit of this term; 

lim
𝜔→𝜔𝑛

[
𝑐𝑜𝑠𝜔𝑡 −𝑐𝑜𝑠𝜔𝑛𝑡

1 − (
𝜔

𝜔𝑛
)2

] = lim
𝜔→𝜔𝑛

[
𝑑

𝑑𝜔
(𝑐𝑜𝑠𝜔𝑡 −𝑐𝑜𝑠𝜔𝑛𝑡)

𝑑

𝑑𝜔
{1 − (

𝜔

𝜔𝑛
)
2
}

] = lim
𝜔→𝜔𝑛

[
𝑡𝑠𝑖𝑛𝜔𝑡 

2
𝜔

𝜔𝑛
2

] = 
𝜔𝑛𝑡

2
𝑠𝑖𝑛𝜔𝑛𝑡 -------- (14) 

Thus the response of the system at resonance becomes; 

𝑥(𝑡) =  𝑥0𝑐𝑜𝑠𝜔𝑛𝑡 +  
𝑥̇0

𝜔𝑛
sin 𝜔𝑛𝑡 +  

𝛿𝑠𝑡𝜔𝑛𝑡

2
sin 𝜔𝑛𝑡 -------- (15) 

 

It can be seen from equation 15 that at resonance, x(t) increases indefinitely.  



The last term of equation 15 is shown in figure from which the amplitude of the response can be seen 

to increase linearly with time. 

 
 

Response of a damped system under harmonic force 

 

If the forcing function is given by F(t) = 𝐹0𝑐𝑜𝑠𝜔𝑡, the equation of motion becomes  

m𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝐹0𝑐𝑜𝑠𝜔𝑡 ------- (16) 

The particular solution of equation 16 is also expected to be harmonic; we assume it in the form  

𝑥𝑝(𝑡) = 𝑋𝑐𝑜𝑠(𝜔𝑡 −  ∅) ------- (17) 

Where X and ∅ are constants to be determined. X and ∅ denote the amplitude and phase angle of the 

response, respectively. 

X[(k - m𝜔2)cos(𝜔𝑡 −  ∅) - c𝜔sin⁡(𝜔𝑡 −  ∅)] = 𝐹0𝑐𝑜𝑠𝜔𝑡 -------- (18) 

Using the trigonometric relations; 

cos(𝜔𝑡 −  ∅) = 𝑐𝑜𝑠𝜔𝑡𝑐𝑜𝑠∅ + 𝑠𝑖𝑛𝜔𝑡𝑠𝑖𝑛∅ 

sin(𝜔𝑡 −  ∅) = 𝑠𝑖𝑛𝜔𝑡𝑐𝑜𝑠∅ − 𝑐𝑜𝑠𝜔𝑡𝑠𝑖𝑛∅ 

In equation 18 and equating the coefficients of 𝑐𝑜𝑠𝜔𝑡 and 𝑠𝑖𝑛𝜔𝑡 on both sides of the resulting 

equation, we obtain 

X[(k - m𝜔2)cos∅ + c𝜔sin⁡∅] = 𝐹0 

X[(k - m𝜔2)sin∅ - c𝜔cos⁡∅] = 0 -------- (19) 

Solution of equation 19 gives,         X = 
𝐹0

[(𝑘 − 𝑚𝜔2)+ 𝑐2𝜔2]1/2
 -------- (20) 

and                                                    ∅ =  tan−1(
𝑐

𝑘 − 𝑚𝜔2) --------- (21) 

By inserting the expressions of X and  ∅ from equations 20 and 21 into equation 17. We obtain the 

particular solution of equation 16. figure shows typical plots of the forcing function and (steady-state) 

response. Dividing both the numerator and denominator of equation 20 by k and making the following 

substitutions,  

𝜔𝑛 =  √
𝑘

𝑚
 = undamped natural frequency. 

𝜁 =  
𝑐

𝑐1
=  

𝑐

2𝑚𝜔𝑛
;  
𝑐

𝑚
= 2𝜁𝜔𝑛 , 

𝛿𝑠𝑡 =  
𝐹0
𝑘
= 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑖𝑐 𝑓𝑜𝑟𝑐𝑒 𝐹0; 𝑎𝑛𝑑 

𝑟 =  
𝜔

𝜔𝑛
= 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑖𝑜 

We obtain,  
𝑋

𝛿𝑠𝑡
=  

1

{[1 − (
𝜔

𝜔𝑛
)
2
]
2

+ [2𝜁
𝜔

𝜔𝑛
]2}2

 = 
1

√(1 − 𝑟2)2+ (2𝜁𝑟)2
 -------- (22) 

and                                           ∅ =  tan−1{
2𝜁

𝜔

𝜔𝑛

1 − (
𝜔

𝜔𝑛
)2
} = tan−1(

2𝜁𝑟

1 − 𝑟2
) --------- (23) 

 

 

As stated, the quantity X/𝛿𝑠𝑡 is called the magnification factor, amplification factor, or amplitude ratio. 



The variations of X/𝛿𝑠𝑡 and ∅ with the frequency ratio r and the damping ratio ζ are shown in figure.  

The following observations can be made from (22) and (23). 

1] For an undamped system (ζ = 0), equation 23 shows that the phase angle ∅ = 0 (for r < 1) or 180˚ 

(for r > 1) and equation 22 reduces. 

2] The damping reduces the amplitude ratio for all values of the forcing frequency. 

3] The reduction of the amplitude ratio in the presence of damping is very significant at or near 

resonance. 

4] with damping, the maximum amplitude ratio occurs when 𝑟 =  √1 − 2𝜁2 or 𝜔 =  𝜔𝑛√1 − 2𝜁2 ----

---- (24) 

 

Which is lower than the undamped natural frequency 𝜔𝑛 and the damped natural frequency 𝜔𝑑 = 

𝜔𝑛√1 − 𝜁2. 

5] The maximum value of X (when r = √1 − 2𝜁2) is given by 

(
𝑋

𝛿𝑠𝑡
)𝑚𝑎𝑥 =  

1

2𝜁√1 −𝜁2
 -------- (25) 

And the value of X at 𝜔 =  𝜔𝑛 by       (
𝑋

𝛿𝑠𝑡
)𝜔= 𝜔𝑛

=  
1

2𝜁
 -------- (26) 

Equation 25 can be used for the experimental determination of the measure of damping present in the 

system. In a vibration test, if the maximum amplitude of the response (𝑋)𝑚𝑎𝑥 is measured, the 

damping ratio of the system can be found usingequation 26. conversely, if the amount of damping is 

known, one can make an estimate of the maximum amplitude of vibration. 

6] For ζ> 1/√2. The graph of X has no peaks and for ζ = 0, there is a discontinuity at r = 1. 

7] The phase angle depends on the system parameters m, c, and k and the forcing frequency 𝜔 but not 

on the amplitude 𝐹0 of the forcing function. 

8] The phase angle ∅ by which the response x(t) or X lags the forcing function F(t) or 𝐹0 will be very 

small for small values of r. For very large values of r, phase angle approaches 180˚ asymptotically. 

Thus, the amplitude of vibration will be in phase with the exciting force for r << 1 and out of phase for 

r >> 1. The phase angle at resonance will be 90˚ for all values of damping (ζ). 

9] Below resonance (𝜔 <  𝜔𝑛), the phase angle increases with increase in damping. Above resonance 

(𝜔 > 𝜔𝑛), the phase angle decreases with increase in damping. 

 

Forced Vibration with Coulomb Damping 

 

For a single degree of freedom system with Coulomb or dry friction damping, subjected to a harmonic 

force F(t) = 𝐹0𝑠𝑖𝑛𝜔𝑡, the equation of motion is given by  

𝑚𝑥̈ + 𝑘𝑥 ±  𝜇𝑁 = 𝐹(𝑡) =  𝐹0𝑠𝑖𝑛𝜔𝑡 -------- (27) 

Where the sign of the friction force (𝜇𝑁) is positive (negative) when the mass moves from left to right 

(right to left). The exact solution of equation 27 is quite involved. However, we can expect that if the 

dry friction damping force is large, the motion of the mass will be discontinuous. On the other hand, if 

the dry friction force is small compared to the amplitude of the applied force 𝐹0,  the steady state 

solution is expected to be nearly harmonic. In this case, we can find an approximate solution of 

equation 27 by finding an equivalent viscous damping ratio. To find an equivalent viscous damping 

ratio, we equate the energy dissipated due to dry friction to the energy dissipated by an equivalent 

viscous damper during a full cycle of motion. If the amplitude of motion is denoted as X, the energy 

dissipated by the friction force 𝜇𝑁 in a quarter cycle is 𝜇𝑁X. hence, in a full cycle, the energy 

dissipated by dry friction damping is given by  

∆𝑊 = 4𝜇𝑁𝑋 ---------(28) 

If the equivalent viscous damping constant is denoted as 𝑐𝑒𝑞, the energy dissipated during a full cycle 



will be 

∆𝑊 =  𝜋𝑐𝑒𝑞𝜔𝑋
2 ---------(29) 

By equating equations 28 and 29, we obtain 

𝑐𝑒𝑞 =  
4𝜇𝑁

𝜋𝜔𝑋
 -------(30) 

Thus, the steady-state response is given by 

𝑥𝑝(𝑡) = 𝑋𝑠𝑖𝑛(𝜔𝑡 −  ∅) -------(31) 

Where the amplitude X can be found from equation: 

X = 
𝐹0

[(𝑘 −𝑚𝜔2+ (𝑐𝑒𝑞𝜔)
2)]1/2

 = 
(𝐹0/𝑘)

[(1 − 
𝜔2

𝜔𝑛
2)

2

+ (2𝜁𝑒𝑞
𝜔

𝜔𝑛
)2]1/2

 ------- (32) 

 

With  

𝜁𝑒𝑞 =  
𝑐𝑒𝑞

𝑐𝑐
=  

𝑐𝑒𝑞

2𝑚𝜔𝑛
=  

4𝜇𝑁

2𝑚𝜔𝑛𝜋𝜔𝑋
=  

2𝜇𝑁

𝜋𝑚𝜔𝜔𝑛𝑋
 --------(33) 

Substitution of equation 33 into equation 32 gives, 

X = 
(𝐹0/𝑘)

[(1− 
𝜔2

𝜔𝑛
2 )

2

+ (
4𝜇𝑁

𝜋𝑘𝑋
)2]1/2

 --------(34) 

The solution of this equation gives the amplitude X as, 

X = 
𝐹0

𝑘
[
1 − (

4𝜇𝑁

𝜋𝐹0
)2

(1 − 
𝜔2

𝜔𝑛
2 )

2
]1/2 --------- (35) 

 
As stated earlier, equation 35 can be used only if the friction force is small compared to 𝐹0. In fact, the 

limiting value of the friction force 𝜇𝑁 can be found from equation 35. to avoid imaginary values of X, 

we need to have 

1 −  (
4𝜇𝑁

𝜋𝐹0
)
2

> 0 𝑜𝑟 
𝐹0

𝜇𝑁
>  

4

𝜋
. 

If this condition is not satisfied, the exact analysis, is to be used. The phase angle ∅ appearing in 

equation 31 can be found using, ∅ =  tan−1 (
𝑐𝑒𝑞𝜔

𝑘 −𝑚𝜔2) =  tan−1 [
2𝜁𝑒𝑞

𝜔

𝜔𝑛

1 − 
𝜔2

𝜔𝑛
2

] =  tan−1{
4𝜇𝑁

𝜋𝑘𝑋

1 − 
𝜔2

𝜔𝑛
2

} ------- (36) 

 substituting equation 35 into equation 36 for X, we obtain 

∅ = tan−1{

4𝜇𝑁

𝜋𝐹0

[1 − (
4𝜇𝑁

𝜋𝐹0
)2]1/2

} -------(37) 

Equation 36 shows that 𝑡𝑎𝑛∅ is a constant for a given value of 𝐹0/𝜇𝑁. ∅ is discontinuous at 
𝜔

𝜔𝑛
> 1. 

thus equation 37 can also be expressed as  

∅ = tan−1{
±
4𝜇𝑁

𝜋𝐹0

[1 − (
4𝜇𝑁

𝜋𝐹0
)2]1/2

} -------- (38) 

Equation shows that the friction serves to limit the amplitude of forced vibration for 
𝜔

𝜔𝑛
≠ 1. however, 

at resonance (
𝜔

𝜔𝑛
= 1), the amplitude becomes infinite. This can be explained as follows. The energy 

directed into the system over one cycle which it is excited harmonically at resonance is  

∆𝑊 ʹ = ∫ 𝐹
𝑑𝑥

𝑑𝑡
𝑑𝑡 =  ∫ 𝐹0𝑠𝑖𝑛𝜔𝑡. [𝜔𝑋𝑐𝑜𝑠(𝜔𝑡 −  ∅)]𝑑𝑡

𝜏=2𝜋/𝜔

0

𝜏

0
 ------(39) 

Since equation 36 gives ∅ = 90˚ at resonance, equation 39 becomes 

∆𝑊 ʹ = 𝐹0𝑋𝜔 ∫ 𝑠𝑖𝑛2𝜔𝑡𝑑𝑡 =  𝜋𝐹0𝑋
2𝜋/𝜔

0
 --------(40) 



 

The energy dissipated from the system is given by equation. Since 𝜋𝐹0𝑋 > 4𝜇𝑁𝑋 for X to be real-

valued. ∆𝑊 ʹ>∆𝑊 at resonance (see figure). Thus, more energy isdirected into the system per cycle 

than is dissipated per cycle. This extra energy is used to build up the amplitude of vibration. For the 

non resonant condition (
𝜔

𝜔𝑛
≠ 1) the energy input can be found from equation (39). 

∆𝑊ʹ =  𝜔𝐹0𝑋∫ 𝑠𝑖𝑛𝜔𝑡𝑐𝑜𝑠(𝜔𝑡 −  ∅)𝑑𝑡 =  𝜋𝐹0𝑋𝑠𝑖𝑛∅
2𝜋/𝜔

0
 -------- (41) 

Due to the presence of sin∅ in equation 41. the input energy curve in figure is made to coincide with 

the dissipated energy curve. So the amplitude is limited. Thus, the phase of the motion ∅ can be seen to 

limit the amplitude of the motion. 

The periodic response of a spring-mass system with Coulomb damping subjected to base excitation. 

 

 
 

Forced Vibration with Hysteresis Damping 

 

Consider a single degree of freedom system with hysteresis damping and to a harmonic force F(t) = 

𝐹0𝑠𝑖𝑛𝜔𝑡 as indicated in figure. The equation of motion of the mass can be derived by using 

m𝑥̈ + 
𝛽𝑘

𝜔
𝑥̇ + 𝑘𝑥 =  𝐹0𝑠𝑖𝑛𝜔𝑡 ------(1) 

where 
𝛽𝑘

𝜔
𝑥̇ = (

ℎ

𝜔
)𝑥̇ denotes the damping force. Although the solution of equation is quite involved for a 

general forcing function F(t), our interest is to find the response under a harmonic force. 

 
Now, The steady-state solution of equation be, 

𝑥𝑝(𝑡) = X Sin(𝜔𝑡 −  ∅) ------(2) 

But substituting equation (2) into equation (1), we get 

X = 
𝐹0

𝑘{(1−
𝜔2

𝜔𝑛
2 )+ 𝛽2}1/2

 ------(3) 

and, ∅ =  tan−1[
𝛽

(1−
𝜔2

𝜔𝑛
2 )
] ------(4) 

with these equation, we have following points: 

1] The amplitude ratio, X/(𝐹0/k) attains its maximum value of 𝐹0/k𝛽 at the resonant frequency (𝜔 =

 𝜔𝑛).  

2] The phase angle ∅ has a value of tan−1 𝛽 at 𝜔 = 0,  in the case of hysteresis damping. 

 

3] Also, equation of motion (suppose harmonic excitation is F = 𝐹0𝑒
𝑖𝜔𝑡)  

m𝑥̈ +  
𝛽𝑘

𝜔
𝑥̇ + 𝑘𝑥 =  𝐹0𝑒

𝑖𝜔𝑡 -------(5) 

In this case, the response x(t) is also a harmonic function involving the factor 𝑒𝑖𝜔𝑡. Hence, 𝑥̇(𝑡) is 

given by i𝜔𝑥(𝑡) then equation becomes; 



𝑚𝑥̈ +  
𝛽𝑘

𝜔
𝑖𝜔𝑥 + 𝑘𝑥 =  𝐹0𝑒

𝑖𝜔𝑡 

𝑚𝑥̈ +  𝑘(1 + 𝑖𝛽)𝑥 =  𝐹0𝑒
𝑖𝜔𝑡 ------(6) 

where, the quantity k(1 + i𝛽) is called the complex stiffness or complex damping. The steady-state 

solution is given by the real part of, 

𝑥(𝑡) =  
𝐹0𝑒

𝑖𝜔𝑡

𝑘[(1−
𝜔2

𝜔𝑛
2)+𝑖𝛽]

 -------(7) 

 

* Hysteresis damping model with a constant stiffness and loss factor is only applicable for 

harmonic excitation. 

 

Problem Based on unit 2 

 

Problem 1]: A spring-mass system consists of a mass weighing 100N and a spring with a stiffness of 

2000N/m. The mass is subjected to resonance by a harmonic force F(t) = 25cos𝜔𝑡 N. Find the 

amplitude of the forced motion at the end of  

(i) 1/4 cycle,                                                     (ii) 2(1/2)cycle,                                     (iii) 5(3/4) cycles.  

Problem 2]: A spring-mass system with m = 10 kg and k = 5000 N/m is subjected to a harmonic force 

of amplitude 250 N and frequency 𝜔. If the maximum amplitude of the mass is observed to be 100 

mm, find the value of 𝜔. 

Problem 3]: A mass ‘m’ is suspended from a spring of stiffness 4000 N/m and is subjected to a 

harmonic force having an amplitude of 100 N and a frequency of 5 Hz. The amplitude of the forced 

motion of the mass is observed to be 20 mm. find the value of ‘m’. 

 

Problem 4]:A weight of 50N is suspended from a spring of stiffness of 4000 N/m and is subjected to a 

harmonic force of amplitude 60 N and frequency 6 Hz. Find  

(i) the extension of the spring due to the suspended weight. 

(ii) the static displacement of the spring due to the maximum applied force and  

(iii) the amplitude of forced motion of the weight. 

Solution:  

(i) 𝛿 = ⁡
𝜔

𝑘
=⁡

50

4000
= 0.0125⁡𝑚 

(ii) 𝛿𝑠𝑡 =⁡
𝐹0

𝑘
=⁡

60

4000
= 0.015⁡𝑚 

(iii) 𝜔𝑛 = ⁡√
𝑘

𝑚
 = √

4000⁡𝑋⁡9.81

50
= 28.0143⁡𝑟𝑎𝑑/𝑠𝑒𝑐 

𝜔 = 2𝜋𝑓 = 2𝑋𝜋𝑋6 = 37.6992⁡𝑟𝑎𝑑/𝑠𝑒𝑐 

𝑋 =⁡𝛿𝑠𝑡 [
1

1 − (
𝜔

𝜔𝑛
)2
] = 0.0185⁡𝑚 

Problem 5]: A spring-mass system is subjected to a harmonic force whose frequency is close to the 

natural frequency of the system. If the forcing frequency is 39.8Hz, determine the period of beating? 

Answer: 𝑇⁡(𝑝𝑒𝑟𝑖𝑜𝑑) = ⁡
2𝜋

2𝜋(𝑓𝑛−𝑓)
=⁡

10

2
= 5⁡𝑠𝑒𝑐 

 

UNIT-3 

 

VIBRATION UNDER GENERAL FORCING CONDITIONS 



 

Introduction 

 

The vibration of a viscously damped single degree of freedom system under general forcing conditions. 

If the excitation is periodic but not harmonic, it can be replaced by a sum of harmonic function using 

the harmonic analysis procedure. 

* If the system is subjected to a suddenly applied non-periodic force, the response will be transient, 

since steady-state vibrations are not usually produced. 

 

Response Under a General Periodic Force 

 

When the external force F(t) is periodic with period 𝜏 = 2𝜋/𝜔, it can be expanded in a Fourier series, 

F(t) = 
𝑎0

2
+  ∑ 𝑎𝑗𝑐𝑜𝑠𝑗𝜔𝑡 +  ∑ 𝑏𝑗𝑠𝑖𝑛𝑗𝜔𝑡

∝
𝑗=1

∝
𝑗=1  ------(1) 

where, 𝑎𝑗 =  
2

𝜏
∫ 𝐹(𝑡)𝑐𝑜𝑠𝑗𝜔𝑡𝑑𝑡,
𝜏

0
     j = 0,1,2……..------(2) 

and      𝑏𝑗 =  
2

𝜏
∫ 𝐹(𝑡)𝑠𝑖𝑛𝑗𝜔𝑡𝑑𝑡,
𝜏

0
     j = 1,2……..------(3) 

The equation of motion of the system can be expressed as,  

m𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝐹(𝑡) =
𝑎0

2
+  ∑ 𝑎𝑗𝑐𝑜𝑠𝑗𝜔𝑡 +  ∑ 𝑏𝑗𝑠𝑖𝑛𝑗𝜔𝑡

∝
𝑗=1

∝
𝑗=1  ------(4) 

The right hand side of this equation is a constant plus a sum of harmonic functions. Using the principle 

of superposition, the steady-state solution of (4) is the sum of the steady-state solution of the following 

equations: 

m𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 =
𝑎0

2
 ------(5) 

m𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = ∑ 𝑎𝑗𝑐𝑜𝑠𝑗𝜔𝑡 
∝
𝑗=1 -------(6) 

m𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = ∑ 𝑏𝑗𝑠𝑖𝑛𝑗𝜔𝑡 
∝
𝑗=1 -------(7) 

The solution of equation 5 is given by; 

𝑥𝑝(𝑡) =  
𝑎0

2
 ------(8) 

Also, express the solutions of equation 6 and 7 respectively 

𝑥𝑝(𝑡) =
𝑎𝑗/𝑘

√(1−𝑗2𝑟2)2+ (2𝜁𝑗𝑟)2
cos(𝑗𝜔𝑡 − ∅𝑗) ------- (9) 

𝑥𝑝(𝑡) =
𝑏𝑗/𝑘

√(1−𝑗2𝑟2)2+ (2𝜁𝑗𝑟)2
sin(𝑗𝜔𝑡 − ∅𝑗) ------- (10) 

where, ∅𝑗 = tan−1(
2𝜁𝑗𝑟

1−𝑗2𝑟2
)------ (11) 

and r = 
𝜔

𝜔𝑛
 ------ (12) 

Thus, the complete steady-state solution of 4 is given by, 

𝑥𝑝(𝑡) =  
𝑎0

2
 + ∑

𝑎𝑗/𝑘

√(1−𝑗2𝑟2)2+ (2𝜁𝑗𝑟)2
cos(𝑗𝜔𝑡 − ∅𝑗)

∞
𝑗=1  +∑

𝑏𝑗/𝑘

√(1−𝑗2𝑟2)2+ (2𝜁𝑗𝑟)2
sin(𝑗𝜔𝑡 − ∅𝑗)

∞
𝑗=1  -----(13) 

 

Two Degree of Freedom Systems: 

Systems that require two independent coordinates to describe their motion are called Two-degree of 

Freedom systems. 

 

Example:  



 
 

The general rule for the computation of the number of degrees of freedom can be stated as follows: 

Number of degrees of freedom of the system = number of masses in the system X Number of 

possible types of motion of each mass. 

There are two equation of motion for a two degree of freedom system, one for each mass (more 

precisely, for each degree of freedom). 

They are generally in the form of coupled differential equations – i.e., each equation involves all the 

coordinates. If a harmonic solution is assumed for each coordinate, the equation of motion lead to a 

frequency equation that gives two natural frequencies for the system. If we give suitable initial 

excitation, the system vibrates at one of these natural frequencies. 

During free vibration at one of the natural frequencies, the amplitudes of the two degrees of freedom 

(coordinates) are related in a specific manner and the configuration is called a Normal mode, principal 

mode, or natural mode of vibration. Thus, a two degree of freedom system has two normal modes of 

vibration corresponding to the two natural frequencies. 

 

Equations of Motion for forced Vibration: 

Consider a viscously damped two degree of freedom spring-mass system as shown as figure: 

 
Now, the motion of the system is completely described by the coordinates𝑥1(𝑡)𝑎𝑛𝑑⁡𝑥2𝑡, which define 

the positions of the masses m1 and m2 at any time‘t’ from the respective equilibrium positions. The 

external forces F1(t) and F2(t) act on the masses m1 and m2 are shown in figure.  

By Newton’s IInd law of motion to each of the masses gives the equation of motion: 

𝑚1𝑥1̈ + (𝑐1 +⁡𝑐2)𝑥1̇ − 𝑐2𝑥2̇ + (𝑘1 +⁡𝑘2)𝑥1 −⁡𝑘2𝑥2 =⁡𝐹1 ------- (1) 

𝑚2𝑥2̈ − 𝑐2𝑥1̇ + (𝑐2 +⁡𝑐3)𝑥2̇ −⁡𝑘2𝑥1 + (𝑘2 +⁡𝑘3)𝑥2 =⁡𝐹2 ------- (2) 

 

 



equation (1), contains terms involving 𝑥2⁡[𝑛𝑎𝑚𝑒𝑙𝑦, −𝑐2𝑥2̇⁡𝑎𝑛𝑑 −⁡𝑘2𝑥2], and equation (2), contains 

terms involving 𝑥1⁡[𝑛𝑎𝑚𝑒𝑙𝑦,−𝑐2𝑥1̇⁡𝑎𝑛𝑑 −⁡𝑘2𝑥1], 

Hence, they represent a system of two coupled differential equations. We can therefore expect that the 

motions of the mass m1 will influence the motion of the mass m2 and vice-versa. 

Equation (1) and (2) can be written in matrix form as; 

[𝑚]𝑥̈̅(𝑡) + [𝑐]𝑥̇̅(𝑡) + [𝑘]𝑥̅(𝑡) = ⁡ 𝐹⃗(𝑡) ------ (3) 

Where, [m], [c] and [k] are called the mass, damping and stiffness matrices respectively and are given 

by  

[𝑚] = ⁡ [
𝑚1 0
0 𝑚2

] , [𝑐] = ⁡ [
𝑐1 + 𝑐2 −𝑐2
−𝑐2 𝑐2 +⁡𝑐3

] [𝑘] = ⁡ [
𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2 + 𝑘3

] 

and 𝑥⃗(𝑡)𝑎𝑛𝑑⁡𝐹⃗(𝑡) are called the displacement and force vectors, respectively and are given by 

𝑥⃗(𝑡) = {
𝑥1(𝑡)

𝑥2(𝑡)
} 

 

and,       𝐹⃗(𝑡) = {
𝐹1(𝑡)

𝐹2(𝑡)
} 

 

Problem 1]: Find the natural frequencies of the system as shown in figure with m1 = m, m2 = 2m, k1 = 

k, and k2 = 2k. Determine the response of the system when k = 1000 N/m, m 20 kg, and the initial 

values of the displacements of the masses m1 and m2 are 1 and -1 respectively. 

 
Solution: equation of motion,  

𝑚1𝑥1̈ + (𝑘1 +⁡𝑘2)𝑥1 −⁡𝑘2𝑥2 = 0 ------ (1) 

𝑚2𝑥2̈ −⁡𝑘2𝑥1 + 𝑘2𝑥2 = 0 --------- (2) 

with 𝑥𝑖(𝑡) = 𝑋𝑖 cos(𝜔𝑡 + ⁡∅) :⁡⁡𝑖 = 1,2. 

equation (1), give the frequency equation, 

|
−𝜔2𝑚1 + 𝑘1 + 𝑘2 −𝑘2

−𝑘2 −𝜔2𝑚2 +⁡𝑘2
| = 0 

or 𝜔4 − (
𝑘1+𝑘2

𝑚1
+⁡

𝑘2

𝑚2
)𝜔2 +⁡

𝑘1𝑘2

𝑚1𝑚2
= 0 ------- (3) 

roots of equation (3), are 

𝜔1
2, 𝜔2

2 = ⁡
𝑘1+𝑘2

2𝑚1
+⁡

𝑘2

2𝑚2
⁡∓ ⁡√

1

4
(
𝑘1+𝑘2

𝑚1
+⁡

𝑘2

𝑚2
)2 −⁡

𝑘1𝑘2

𝑚1𝑚2
 -------- (4) 

if, 𝑋⃗(1) =⁡ {
𝑋1
(1)

𝑋2
(1)

=⁡𝑟1𝑋1
(1)
} and  𝑋⃗(2) = ⁡{

𝑋1
(2)

𝑋2
(2)

=⁡𝑟2𝑋1
(2)
}, 

 

 

 

 



𝑟1 =⁡
𝑋2
(1)

𝑋1
(1) =⁡

−𝜔1
2𝑚1+𝑘1+𝑘2

𝑘2
=⁡

𝑘2

−𝜔1
2𝑚2+⁡𝑘2

 ------- (5) 

𝑟2 =⁡
𝑋2
(2)

𝑋1
(2) =⁡

−𝜔2
2𝑚1+𝑘1+𝑘2

𝑘2
= ⁡

𝑘2

−𝜔2
2𝑚2+⁡𝑘2

 ------- (6) 

General solutions of equation (1) and (2) is  

𝑥1(𝑡) = 𝑥1
(1)

cos(𝜔1𝑡 +⁡∅1) +⁡𝑥1
(2)
cos⁡(𝜔2𝑡 +⁡∅2) -------- (7) 

𝑥2(𝑡) = 𝑟1𝑥1
(1)

cos(𝜔1𝑡 +⁡∅1) +⁡𝑟2𝑥1
(2)
cos⁡(𝜔2𝑡 +⁡∅2) -------- (8) 

Where, 𝑥1
(1)
, 𝑥1

(2)
, ∅1, ∅2can be found using for, m1 = m, m2 = 2m; k1 = k, k2 = 2k, equation (4) 

𝜔1
2 = (2 − √3)

𝑘

𝑚
; ⁡𝜔2

2 = (2 +⁡√3)
𝑘

𝑚
 --------- (9) 

When k =1000 N/m, and m = 20 kg, 𝜔1 = 3.6602 rad/sec, and 𝜔2 = 13.6603 rad/sec 

𝑟1 =⁡
𝑘2

−𝑚2𝜔1
2 + 𝑘2

= 1.36604, 𝑟2 = ⁡
𝑘2

−𝑚2𝜔2
2 +⁡𝑘2

=⁡−0.36602 

with 𝑥1(0) = 1, 𝑥1̇(0) = 0, 𝑥2(0) = −1, 𝑥2̇(0) = 0, 

gives, 𝑥1
(1)

=⁡−0.36602,𝑥1
(2) =⁡−1.36603, ∅1 = 0,∅2 = 0⁡ 

Response of the system is,  

𝑥1(𝑡) = ⁡−0.36602 cos(3.6603𝑡) − 1.36603cos(13.6603𝑡) 

𝑥2(𝑡) = ⁡−0.5 cos(3.6603𝑡) + 0.5 cos(13.6603𝑡) 

 

Problem 2]:Set up the differential equations of motion for the double pendulum shown in figure. 

Using the coordinates 𝑥1 and 𝑥2 and assuming small amplitudes. Find the natural frequencies the ratio 

of amplitudes, and the locations of nodes for the two modes of vibration when 𝑚1 = 𝑚2 =

𝑚⁡𝑎𝑛𝑑⁡𝑙1 = 𝑙2 = 𝑙. 

Solution: 

 
Taking moment about o and mass 𝑚1, 

𝑚1𝑙1
2𝜃1̈ =⁡−𝑤1(𝑙1𝑠𝑖𝑛𝜃1) + 𝑄𝑠𝑖𝑛𝜃2(𝑙1𝑐𝑜𝑠𝜃1) − 𝑄𝑐𝑜𝑠𝜃2(𝑙1𝑠𝑖𝑛𝜃1) = −𝑤1𝑙1𝑠𝑖𝑛𝜃1 +⁡𝑤2𝑙1(𝜃2 − 𝜃1)--1 

Assuming 𝜃 ≅ 𝑤2, 

Similarly, 

𝑚2𝑙2
2𝜃2̈ +⁡𝑚2𝑙2(𝑙1𝜃1̈) = ⁡−𝑤2(𝑙2𝑠𝑖𝑛𝜃2) = ⁡−𝑤2𝑙2𝜃2 -------- (2) 

using the relations, 𝜃1 = ⁡
𝑥1

𝑙1
⁡𝑎𝑛𝑑⁡𝜃2 =⁡

(𝑥2−𝑥1)

𝑙2
 

equation (1) and (2) becomes, 

𝑚1𝑙1
2 𝑥1̈

𝑙1
+ [𝑤1 +⁡𝑤2 (

𝑙1+𝑙2

𝑙2
)] 𝑥1 −⁡

𝑤2𝑙1

𝑙2
𝑥2 = 0 ------- (3) 

 

 



and, 𝑚2𝑙2
2 𝑥2̈

𝑙2
−𝑤2𝑥1 +⁡𝑤2𝑥2 = 0 -------- (4) 

when, 𝑚1 =⁡𝑚2 = 𝑚, 𝑙2 =⁡ 𝑙1 = 𝑙⁡𝑎𝑛𝑑⁡𝑤1 =⁡𝑤2 = 𝑚𝑔 

then equation (3) and (4) becomes, 

𝑚𝑙𝑥1̈ + 3𝑚𝑔𝑥1 −𝑚𝑔𝑥2 = 0 ------ (5) 

𝑚𝑙𝑥2̈ −𝑚𝑔𝑥1 +𝑚𝑔𝑥2 = 0 ------ (6) 

For harmonic motion, 𝑥𝑖(𝑡) = ⁡ 𝑥𝑖𝑐𝑜𝑠𝜔𝑡; 𝑖 = 1, 2, 3,…… .. 

Equation (5) and (6) becomes, 

−𝜔2𝑚𝑙𝑋1 + 3𝑚𝑔𝑋1 −𝑚𝑔𝑋2 = 0 ------ (7) 

−𝜔2𝑚𝑙𝑋2 −𝑚𝑔𝑋1 +𝑚𝑔𝑋2 = 0 ------ (8) 

From which the frequency equation can be obtained as; 

𝜔4𝑚2𝑙2 − (4𝑚2𝑙𝑔)𝜔2 + 2𝑚2𝑔2 = 0 

i.e., 𝜔1
2, 𝜔2

2 = (2 ± √2)
𝑔

𝑙
 

∴ ⁡𝜔1 = 0.7654√
𝑔

𝑙
,𝜔2 = 1.8478√

𝑔

𝑙
 

Ratio of amplitude is given by, 

𝑋1
𝑋2

=⁡
𝑚𝑔

−𝜔2𝑚𝑙 + 3𝑚𝑔
=⁡

1

(−𝜔2 𝑙

𝑔
+ 3)

 

In mode 1, 𝜔1 = 0.7654√
𝑔

𝑙
, 𝑟1 = (

𝑋1

𝑋2
)(1) = 0.4142 

  

In mode 2, 𝜔2 = 1.8478√
𝑔

𝑙
, 𝑟2 = (

𝑋1

𝑋2
)(2) = -2.4133 

One node located at z: 

𝑧

1
= ⁡

1 − 𝑧

2.4133
⁡𝑜𝑟⁡𝑧 = 0.2930 

Free Vibration Analysis of an Undamped System: 

For the free vibration analysis of the system shown in figure; we set 𝑓1(𝑡) = ⁡𝑓2(𝑡) = 0. 

 

Suppose, if damping is disregarded, 𝑐1 =⁡𝑐2 =⁡𝑐3 = 0,⁡and the equation of motion, 

𝑚1𝑥1̈(𝑡) + (𝑘1 +⁡𝑘2)𝑥1(𝑡) −⁡𝑘2𝑥2(𝑡) = 0 ------ (1) 

𝑚2𝑥2̈(𝑡) −⁡𝑘2𝑥1(𝑡) + (𝑘2 + 𝑘3)𝑥2(𝑡) = 0 --------- (2) 

Here, we are interested in knoeing whether 𝑚1 and 𝑚2can oscillate harmonically with the same 

frequency and phase angle but with different amplitudes. 



Assuming that it is possible to have harmonic motion of 𝑚1 and 𝑚2 at the same frequency 𝜔 and the 

same phase angle ∅, we take the solutions of equation (1) and (2) as 

𝑥1(𝑡) = ⁡𝑋1cos⁡(𝜔𝑡 + ⁡∅) ------ (3) 

𝑥2(𝑡) = ⁡𝑋2cos⁡(𝜔𝑡 + ⁡∅) ------ (4) 

Where, 𝑋1 and 𝑋2 are constant that denote the maximum amplitudes of 𝑥1(𝑡) and 𝑥2(𝑡), and ∅ is the 

phase angle. Substitute equation (3), (4) into equation (1), (2), we obtain, 

[{-𝑚1𝜔
2 + (𝑘1 + 𝑘2)}𝑋1 − 𝑘2𝑥2]cos⁡(𝜔𝑡 + ∅) = 0 ------- (5) 

[{-𝑚2𝜔
2 + (𝑘2 + 𝑘3)}𝑋2 − 𝑘2𝑥1]cos⁡(𝜔𝑡 + ∅) = 0 ------- (6) 

Since equation (5), (6) must be satisfied for all values of the time ‘t’, the terms between brackets must 

be zero. This yields 

{-𝑚1𝜔
2 + (𝑘1 + 𝑘2)}𝑋1 − 𝑘2𝑥2= 0 ------ (7) 

{-𝑚2𝜔
2 + (𝑘2 + 𝑘3)}𝑋2 − 𝑘2𝑥1 = 0 ------ (8) 

Which represent two simultaneously homogeneous algebraic equations in the unknown 𝑋1 and 𝑋2. 

It can be seen that equation (7), (8) are satisfied by the trivial solution 𝑋1=𝑋2 = 0, which implies that 

there is no vibration. 

For a non-trivial solution of 𝑋1 and 𝑋2, the determines of the coefficient of 𝑋1 and 𝑋2 must be zero: 

det[
{−𝑚1𝜔

2 + (𝑘1 + 𝑘2)} −𝑘2
−𝑘2 {−𝑚2𝜔

2 + (𝑘2 + 𝑘3)}
] = 0 

or, (𝑚1𝑚2)𝜔
4 − {(𝑘1 + 𝑘2)𝑚2 + (𝑘2 + 𝑘3)𝑚1}𝜔

2 + ⁡𝜔{(𝑘1 +⁡𝑘2)(𝑘2 +⁡𝑘3) −⁡𝑘2
2} = 0 ------ (9) 

equation (9) is called the frequency or characteristic equation because solution of this equation yields 

the frequencies or the characteristic values of the system. The roots of equation (9) are given by, 

𝜔1
2, 𝜔2

2 = ⁡
1

2
{
(𝑘1+𝑘2)𝑚2+(𝑘2+𝑘3)𝑚1

𝑚1𝑚2
} ∓ [{

(𝑘1+𝑘2)𝑚2+(𝑘2+𝑘3)𝑚1

𝑚1𝑚2
}
2

− 4{
(𝑘1+𝑘2)(𝑘2+𝑘3)−⁡𝑘2

2

𝑚1𝑚2
}]1/2 ------ (10) 

This shoes that it is possible for the system to have a non-trivial harmonic solution of the form of 

equation (3), (4) when 𝜔 is equal to 𝜔1 or 𝜔2 gives by equation (10), we call 𝜔1 and 𝜔2 the natural 

frequencies of the system. 

The values of 𝑋1 and 𝑋2 remain to be determined. These values depend on the natural frequencies 𝜔1 

and 𝜔2. We shall denote the values of 𝑋1 and 𝑋2 corresponding to 𝜔1 as 𝑋1
(1)

 and 𝑋2
(1)

 and those 

corresponding to 𝜔2 as𝑋1
(2)

 and 𝑋2
(2)

. Further, since the equation (7), (8) are homogeneous, only the 

ratios 𝑟1 = {
𝑋2
(1)

𝑋1
(1)} and 𝑟2 = {

𝑋2
(2)

𝑋1
(2)} can be found. 

For 𝜔2 = 𝜔1
2 =⁡𝜔2

2, equation (7), (8) gives 

𝑟1 = {
𝑋2
(1)

𝑋1
(1)} = 

−𝑚1𝜔1
2+(𝑘1+𝑘2)

𝑘2
= ⁡

𝑘2

−𝑚2𝜔1
2+(𝑘2+𝑘3)

------- (11) 

𝑟1 = {
𝑋2
(2)

𝑋1
(2)} = 

−𝑚1𝜔2
2+(𝑘1+𝑘2)

𝑘2
= ⁡

𝑘2

−𝑚2𝜔2
2+(𝑘2+𝑘3)

------- (12) 
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Several methods of determining the natural frequencies and mode shapes of multidegree- 

of-freedom systems are outlined in this chapter. Specifically, Dunkerley s formula, Rayleigh s 

method, Holzer s method, the matrix iteration method, and Jacobi s method are presented. 

Derivation of Dunkerley s formula is based on the fact that higher natural frequencies of 

most systems are large compared to their fundamental frequencies. It gives an approximate 
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value, always smaller than the exact value, of the fundamental natural frequency. 

Rayleigh s method, which is based on Rayleigh s principle, also gives an approximate 

value of the fundamental natural frequency, which is always larger than the exact value. 

Proof is given of Rayleigh s quotient and its stationariness in the neighborhood of an 

eigenvalue. It is also shown that the Rayleigh s quotient is never lower than the first eigen- 

value and never higher than the highest eigenvalue. Use of the static deflection curve in 

estimating the fundamental natural frequencies of beams and shafts using Rayleigh s 

method is presented. Holzer s method, based on a trial-and-error scheme, is presented to 

find the natural frequencies of undamped, damped, semidefinite, or branched translational 

and torsional systems. The matrix iteration method and its extensions for finding the small- 

est, highest, and intermediate natural frequencies are presented. A proof for the conver- 

gence of the method to the smallest frequency is given. Jacobi s method, which finds all 

the eigenvalues and eigenvectors of real symmetric matrices, is outlined. The standard 

eigenvalue problem is defined and the method of deriving it from the general eigenvalue 

problem, based on the Choleski decomposition method, is presented. Finally, the use of 

MATLAB in finding the eigenvalues and eigenvectors of multidegree-of-freedom systems 

is illustrated with several numerical examples. 

 

Learning Objectives 

After you have finished studying this chapter, you should be able to do the following: 

● Find the approximate fundamental frequency of a composite system in terms of the 

natural frequencies of component parts using Dunkerley s formula. 

● Understand Rayleigh s principle, and the properties of Rayleigh s quotient, and com- 

pute the fundamental natural frequency of a system using Rayleigh s method. 

● Find the approximate natural frequencies of vibration and the modal vectors by using 

Holzer s method. 

● Determine the smallest, intermediate, and highest natural frequencies of a system by 

using matrix iteration method and its extensions (using matrix deflation procedure). 

● Find all the eigenvalues and eigenvectors of a multidegree-of-freedom system using 

Jacobi s method. 

● Convert a general eigenvalue problem into a standard eigenvalue problem based on 

the Choleski decomposition method. 

● Solve eigenvalue problems using MATLAB. 

 

 

 Introduction 
In the preceding chapter, the natural frequencies (eigenvalues) and the natural modes 

(eigenvectors) of a multidegree-of-freedom system were found by setting the characteristic 

determinant equal to zero. Although this is an exact method, the expansion of the charac- 

teristic determinant and the solution of the resulting nth-degree polynomial equation to 

obtain the natural frequencies can become quite tedious for large values of n. Several ana- 

lytical and numerical methods have been developed to compute the natural frequencies and 



 

- 
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mode shapes of multidegree-of-freedom systems. In this chapter, we shall consider 

Dunkerley s formula, Rayleigh s method, Holzer s method, the matrix iteration method, 

and Jacobi s method. Dunkerley s formula and Rayleigh s method are useful only for esti- 

mating the fundamental natural frequency. Holzer s method is essentially a tabular method 

that can be used to find partial or full solutions to eigenvalue problems. The matrix itera- 

tion method finds one natural frequency at a time, usually starting from the lowest value. 

The method can thus be terminated after finding the required number of natural frequen- 

cies and mode shapes. When all the natural frequencies and mode shapes are required, 

Jacobi s method can be used; it finds all the eigenvalues and eigenvectors simultaneously. 

 

 Dunkerley s Formula 
Dunkerley s formula gives the approximate value of the fundamental frequency of a com- 

posite system in terms of the natural frequencies of its component parts. It is derived by 

making use of the fact that the higher natural frequencies of most vibratory systems are 

large compared to their fundamental frequencies [7.1 7.3]. To derive Dunkerley s formula, 

consider a general n-degree-of-freedom system whose eigenvalues can be determined by 

solving the frequency equation, Eq. (6.63): 

- [k] + v2[m] = 0 

or 

1 

` - 
v2

 [I] + [a][m] ` = 0 

 

 
 

(7.1) 

For a lumped-mass system with a diagonal mass matrix, Eq. (7.1) becomes 
 

1 0 Á 0 

5 1 0 1 Á 0 
a11 a12 

Á a1n 

a21 a22 
Á a2n 

m1 0 Á 0 
0 m2 

Á 0 5 

- 
v2

 E 
o
 

0 0 Á 1 

U + E 
o 

an1 an2 
Á ann 

U E U = 0 
o 

0 0 Á mn 

 

that is, 

 

¢ 

 

 
1 

- 
v2 

+ a11m1 a12m2 

 

 

a1nmn 

a21m1 

8 

1  

¢ 
v2 + a 22m2 

Á a2nmn 
 

8 = 0 

 
 

(7.2) 

o o o 

an1m1 an2m2 

1  

¢ 
v2 + a nnmn 

Á 



 

v v 

v v 

v v 

v 

v v v 

v v 
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The expansion of Eq. (7.2) leads to 

1 n 

 + 
v2 * - (a11m1 + a22m2 + 

1 

+ annmn) + 
v2 * 

n- 1 

  + (a11a22m1m2 + a11a33m1m3 + Á + an- 1,n - 1annmn- 1mn 

  - a12a21m1m2 - 

  - Á = 0 

Á  - an- 1,nan,n- 1mn- 1mn) + 
2 

n- 2 

* 

(7.3) 

This is a polynomial equation of n th degree in (1/v2). Let the roots of Eq. (7.3) be denoted 
as 1/v2, 1/v2, Á , 1/v2. Thus 

1 2 n 

 
1 1 1 

 + - * + 
  

 
- 

1 
* Á + 

1 
- 

1 
* 

   

2 2 2 2 2 
1 2 

 
1 n 1 1 Á 

 
   

2 
n 

 

1 1 n- 1 
Á

 
 

  = + 
v2 * 

- + 
2 

+ 
2 

+ 
1 2 + 

v2 
* + 

v2 * - = 0 (7.4) 

Equating the coefficient of (1/v2)n-1 in Eqs. (7.4) and (7.3) gives 

1 1 
2 

+ 
2 

1 2 

+ Á + 
1

 
2 
n 

 

= a11m1 

 

+ a22m2 

 

+ Á + a 

 
nnmn 

 
(7.5) 

In most cases, the higher frequencies v2, v3, Á , vn are considerably larger than the fun- 

damental frequency v1, and so 

1 1 

2  V 2
,  

i 1 
i = 2, 3, Á , n 

Thus, Eq. (7.5) can be approximately written as 

1 

2 
M a 

1 

 
11m1 

 

+ a22m2 

 

+ Á + a 

 
nnmn 

 
(7.6) 

This equation is known as Dunkerley s formula. The fundamental frequency given by 

Eq. (7.6) will always be smaller than the exact value. In some cases, it will be more conve- 

nient to rewrite Eq. (7.6) as 
 

1 1 
2 

M 
2 

1 1n 

+ 
1 

+ Á + 
1

 
2 2 
2n nn 

 
(7.7) 

 

where vin  = (1/aiimi)
1/2  = (kii/mi)

1/2 denotes the natural frequency of a single-degree- 

of-freedom system consisting of mass mi and spring of stiffness kii, i = 1, 2, Á , n. The 
use of Dunkerley s formula for finding the lowest frequency of elastic systems is presented 

in references [7.4, 7.5]. 

v 

v 

n 

v 

v 

v 

v 

Á 

1 
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Fundamental Frequency of a Beam 
EX A M P L E  7 . 1    
      Estimate the fundamental natural frequency of a simply supported beam carrying three identical 

equally spaced masses, as shown in Fig. 7.1. 

Solution: The flexibility influence coefficients (see Example 6.6) required for the application of 

Dunkerley s formula are given by 

3    l3    
 

 

 
 

1 l3 
 

 a = a =   , 
256 EI 

Using m1 = m2 = m3 = m, Eq. (7.6) thus gives 

a =   
48 EI 

(E.1) 

1 
M + 

3 
 

 
1 3 

+ + *   
  

 

ml3 
 
= 0.04427  

 

ml3 

2 256 48 256   EI EI 
 

EI 
 v1 M 4.75375  

Aml3 
EI 

This value can be compared with the exact value of the fundamental frequency, 4.9326 (see 
 

Problem 6.54) 
Aml3 

 

m1 m2 m3 

 
 

FIGURE 7.1   Beam carrying masses. 

* 
 

 

 Rayleigh s Method 
Rayleigh s method was presented in Section 2.5 to find the natural frequencies of single- 

degree-of-freedom systems. The method can be extended to find the approximate value of 

the fundamental natural frequency of a discrete system.1 The method is based on 

Rayleigh s principle, which can be stated as follows [7.6]: 
 

The frequency of vibration of a conservative system vibrating about an equilibrium posi- 

tion has a stationary value in the neighborhood of a natural mode. This stationary value, 

in fact, is a minimum value in the neighborhood of the fundamental natural mode. 
 

We shall now derive an expression for the approximate value of the first natural frequency 

of a multidegree-of-freedom system according to Rayleigh s method. 

 
 

1Rayleigh s method for continuous systems is presented in Section 8.7 

x1(t ) x2(t ) 

l 
4 

l 
4 

l 
4 

x3(t )       

l 
4 

l 

v 



 

3 

   

1 
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The kinetic and potential energies of an n-degree-of-freedom discrete system can be 

expressed as 

 T  =  
1  # !T 

# !
  (7.8)  x [m]x 

2 
1 : T :  V = x 
2 

[k] x (7.9) 

To find the natural frequencies, we assume harmonic motion to be 
  ! ! 

 

x = X cos vt 
! 

 

(7.10) 

where X denotes the vector of amplitudes (mode shape) and v represents the natural fre- 
quency of vibration. If the system is conservative, the maximum kinetic energy is equal to 

the maximum potential energy: 

Tmax = Vmax 

By substituting Eq. (7.10) into Eqs. (7.8) and (7.9), we find 

(7.11) 

! ! 
= T 2  Tmax  X [m]Xv 

2 
(7.12) 

1  ! !  V = T 
 (7.13) 

max 
 

By equating Tmax and Vmax, we obtain2 

 X  [k]X 
2 

! ! 
X T[k]X 

v2 = ! ! (7.14) 

X T[m]X 
! 

 

The right-hand side of Eq. (7.14) is known as Rayleigh s quotient and is denoted as R(X). 

! ! 
 As stated earlier, R(X) has a stationary value when the arbitrary vector X is in the neigh- 

! ! 
Properties 
of Rayleigh s 
Quotient 

borhood of any eigenvector X(r). To prove this, we express the arbitrary vector X in terms 
! 

of the normal modes of the system, X(i), as 
! ! ! ! 

 
    

 
Then 

X = c1X(1) + c2X(2) + c3X(3) + Á (7.15) 

! 
T 

! 
2    

!
(1)T 

!
(1) 

    

2   
!
(2)T 

 
! 
(2) 

 X   [k]X = c1 X [k]X + c2X 
! T ! 

 [k]X 

  + c2X(3) [k]X(3) + Á 
(7.16) 

 

! ! ! 
2Equation (7.14) can also be obtained from the relation [k]X = v2[m]X. Premultiplying this equation by X T 

and solving the resulting equation gives Eq. (7.14). 



 

i 

i 

c 

r  c 

r 

r 

r 
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and 
 
 

! ! ! ! 
T T 

    

 

! T ! 
 

   X [m]X = c2 X(1) [m]X(1) + c2 X(2) [m]X(2) 
1 

   + c2 
!
(3)T 
 

2 

! (3) Á 
 

 

 as the cross terms of the form  

3 X 

!
(i)T

 
 

[m]X + 

! (j) and  
 

 
!
(i)T

 
 

 
 

! (j) 
 

(7.17) 

 are zero by the 
cicjX [k]X cicjX [m]X , i Z j, 

orthogonality property. Using Eqs. (7.16) and (7.17) and the relation 

! T ! ! T ! 
X(i) [k]X(i)  = v2X(i) [m]X(i) (7.18) 

 

the Rayleigh s quotient of Eq. (7.14) can be expressed as 

! 
! 2    2   (1)T 

 

 

! (1) 
 

2   2  
!
(2)T 

 

! (2) Á 
 

v2 = R(X) = 
c1 v1X

 [m]X 
 

 

+ c2v2X 
 

 

[m]X + 
 

 

(7.19) 
2  

!
(1)T 

!
(1) 2   

!
(2)T ! (2) Á 

c1X [m]X + c2 X [m]X + 
 

If the normal modes are normalized, this equation becomes 
 

! c2v2 + c2v2 + Á v2 = R(X) =   
1    1 2 2

 (7.20) 
 

c2 + c2 + Á 
1 2 

! ! 
If X differs little from the eigenvector X(r), the coefficient cr will be much larger than the 
remaining coefficients c (i Z r), and Eq. (7.20) can be written as 

  

 

 2   2 2 ci    
2   

2
 

 

 
! 

R(X) = 

crvr + cr a 
i= 1, 2, Á 

i Z r 

 + * vi 
r 

 

(7.21) 

2 + c2 
 

a 
i= 1, 2, Á 

i Z r 

ci    
2 

+ * 
r 

 

Since ci/cr = ei V 1, where ei is a small number for all i Z r, Eq. (7.21) gives 

! 

R(X) = v251 + 0(e2)6 

 
 

(7.22) 
 

where 0(e2) represents an expression in e of the second order or higher. Equation (7.22) 
! ! 

indicates that if the arbitrary vector X differs from the eigenvector X(r) by a small quantity 
! 

of the first order, R(X) differs from the eigenvalue v2 by a small quantity of the second 

order. This means that Rayleigh s quotient has a stationary value in the neighborhood of an 

eigenvector. 

c 



 

1 

n 

1 

1 a i 1  i 
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The station!ary value is actually a minimum value in the neighborhood of the funda- 
mental mode, X(1). To see this, let r = 1 in Eq. (7.21) and write 

! 

 R(X) = 

 M v2 +  e2v2 - v2  e2 
1 a i   i 1   a i 

i = 2, 3, Á i = 2, 3, Á 

 

 M v2 + (v2  - v2)e2 
i = 2, 3, Á 

 
(7.23) 

 

Since, in general, v2 7 v2 for i = 2, 3, Á , Eq. (7.23) leads to 
i 1 

! 
R(X) Ú v2 (7.24) 

which shows that Rayleigh s quotient is never lower than the first eigenvalue. By proceed- 

ing in a similar manner, we can show that 

! 
R(X) v2 (7.25) 

which means that Rayleigh s quotient is never higher than the highest eigenvalue. Thus 
Rayleigh s quotient provides an upper bound for v2 and a lower bound for v2. 

1 n 

  
Computation of 
the 
Fundamental 

 
Equation (7.14) can be used to find an approxim!ate value of the first natural frequenc!y (v1) 
of the system. For this, we select a trial vector X to represent the first natural mode X(1) and 

substitute it on the right-hand side of Eq. (7.14). This yields the approximate value of v2. 
Because Rayleigh s quotient is stationary, remarkably good estimates of v2 can be obtained 

 

! ! 1 
  

Natural 
Frequency 

even if the trial vector X deviates greatly from the true natural mode X(1). Obviously, th!e 

estimated value of the fundamental frequ!ency v1 is more accurate if the trial vector (X) 
chosen resembles the true natural mode X(1) closely. Rayleigh s method is compared with 

Dunkerley s and other methods in Refs. [7.7 7.9]. 

 

Fundamental Frequency of a Three-Degree-of-Freedom System 
E X A M P L E 7 . 2    
      Estimate the fundamental frequency of vibration of the system shown in Fig. 7.2. Assume that 

m1 = m2 = m3 = m, k1 = k2 = k3 = k, and the mode shape is 

 
! 1 

 

X = c 2 s 
3 

v1 + 2 
a 

i = 2, 3, Á 1 

  ¢ vi 
c 

ci 
2 

2 

2 

b 1 + 
ci 

a 
i = 2, 3, Á 1 

  ¢ r 
c 



 

m3 

m2 

m1 

 
 

k1 
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x1(t) 

 
k2 

 

 

x2(t) 

 
k3 

 

 

x3(t) 

 

FIGURE 7.2 Three- 

degree-of-freedom 

spring-mass system. 

 

Solution: The stiffness and mass matrices of the system are 
 

2 - 1 0 

 [k] = k C - 1 2 - 1 S 

0 - 1 1 
 

1 0 0 

 [m] = m C 0 1 0 S 
0 0 1 

 

(E.1) 
 
 
 

(E.2) 

 

By substituting the assumed mode shape in the expression for Rayleigh s quotient, we obtain 
 

2 - 1 0 1 

! ! (1 2 3)k C - 1 2 - 1 S c 2 s 
! X T[k]X 0 - 1 1 3 k 

  R(X) = v2 = ! ! = 
 

  = 0.2143  
 

(E.3) 

X T[m]X 1 0 0 1 m 

(1 2 3)m C 0 1 0 S c 2 s 

0 0 1 3 

 
 

 

k 

 v1 = 0.4629 
Am

 

 
(E.4) 



FIGURE 7.3 Shaft carrying masses.  

m2 

m1 
m 3 

w1 

w2 
w3 

l1 l2 l3 l4 
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This  value  is  4.0225  percent  larger  than the  exact  value  of  0.4450 2k/m. The  exact  fundamental 
mode shape (see Example 6.10) in this case is 

! 1.0000 

X(1) = c 1.8019 s 
2.2470 

(E.5) 
 
 

* 

 

  
Fundamental 
Frequency of 
Beams and 
Shafts 

Although the procedure outlined above is applicable to all discrete systems, a simpler 

equation can be derived for the fundamental frequency of the lateral vibration of a beam or 

a shaft carrying several masses such as pulleys, gears, or flywheels. In these cases, the sta- 

tic deflection curve is used as an approximation of the dynamic deflection curve. 

Consider a shaft carrying several masses, as shown in Fig. 7.3. The shaft is assumed to 

have negligible mass. The potential energy of the system is the strain energy of the 

deflected shaft, which is equal to the work done by the static loads. Thus 
 

1 V = (m gw 
 
+ m gw + Á) 

 
(7.26) 

max 
2 1 1 2 2 

 

where mig is the static load due to the mass mi, and wi is the total static deflection of mass 

mi due to all the masses. For harmonic oscillation (free vibration), the maximum kinetic 
energy due to the masses is 

v2 
2 2 Á Tmax = 

2
 (m1w1 + m2w2 + ) 

(7.27) 

 

where v is the frequency of oscillation. Equating Vmax and Tmax, we obtain 

g(m1w1 + m2w2 + Á) v = b 
(m w2 + m w2 + Á) 

r
 

 
1/2 

 

(7.28) 
1   1 2 2 

 

 
 



FIGURE 7.4 Beam under static load.  
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Fundamental Frequency of a Shaft with Rotors 
E X A M P L E 7 . 3    
      Estimate the fundamental frequency of the lateral vibration of a shaft carrying three rotors (masses), 

as shown in Fig. 7.3, with m1 = 20 kg, m2 = 50 kg, m3 = 40 kg, l1 = 1 m, l2 = 3 m, l3 = 4 m, 

and l4 = 2 m. The shaft is made of steel with a solid circular cross section of diameter 10 cm. 

Solution: From strength of materials, the deflection of the beam shown in Fig. 7.4 due to a static 

load P [7.10] is given by 

 Pbx
 (l2 - b2 - x2);        0 x a 

 

 
(E.1) 

w(x) = e 
6EIl 

Pa(l - x) 
-   

6EIl  [a2 + x2 - 2lx];  
 

a x l 

 

(E.2) 

 

Deflection Due to the Weight of m1: At the location of mass m1 (with x = 1 m, b = 9 m, and 

l = 10 m in Eq. (E.1)): 

 
w1 = 

(20 * 9.81)(9)(1) 
 (100 - 81 - 1) = 

6EI(10) 

 
529.74 

 

EI 

 

(E.3) 

 

At the location of m2 (with a = 1 m, x = 4 m, and l = 10 m in Eq. (E.2)): 
 

 

w2 = - 
(20 * 9.81)(1)(6) 

 [1 + 16 - 2(10)(4)] = 
6EI(10) 

1236.06 
 

EI 

 
(E.4) 

 

At the location of m3 (with a = 1 m, x = 8 m, and l = 10 m in Eq. (E.2)): 

 
w3 = - 

 

(20 * 9.81)(1)(2) 
 [1 + 64 - 2(10)(8)] = 

6EI(10) 

 
621.3 

 

EI 

 

(E.5) 

 

Deflection Due to the Weight of m2: At the location of m1 (with x = 1 m, b = 6 m, and l = 10 m 
in Eq. (E.1)): 

 
w1 = 

(50 * 9.81)(6)(1) 
 (100 - 36 - 1) = 

6EI(10) 

 
3090.15 

 

EI 

 

(E.6) 

 

 

 

P 

x 

a b 

l 
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At the location of m2 (with x = 4 m, b = 6 m, and l = 10 m in Eq. (E.1)): 

w2 = 
(50 * 9.81)(6)(4) 

 (100 - 36 - 16) = 
6EI(10) 

 
9417.6 

 

EI 

 

(E.7) 

 

At the location of m3 (with a = 4 m, x = 8 m, and l = 10 m in Eq. (E.2)): 

 
w3 = - 

(50 * 9.81)(4)(2) 
 [16 + 64 - 2(10)(8)] = 

6EI(10) 

 
5232.0 

 

EI 

 

(E.8) 

 

Deflection Due to the Weight of m3: At the location of m1 (with x = 1 m, b = 2 m, and l = 10 m in 
Eq. (E.1)): 

w Ô = 
(40 * 9.81)(2)(1) 

(100 - 4 - 1) = 
1242.6 

 

(E.9) 
1 6EI(10) EI 

 

At the location of m2 (with x = 4 m, b = 2 m, and l = 10 m in Eq. (E.1)): 

w Ô = 
(40 * 9.81)(2)(4) 

(100 - 4 - 16) = 
4185.6 

 
 

 
(E.10) 

2 6EI(10) EI 
 

At the location of m3 (with x = 8 m, b = 2 m, and l = 10 m in Eq. (E.1)): 

wÔ = 
(40 * 9.81)(2)(8)

 (100 - 4 - 64) = 
3348.48 

  

 
 

 
(E.11) 

3 6EI(10) EI 
 

The total deflections of the masses m1, m2, and m3 are 

 
 w = w + w 

+ w Ô = 
4862.49 

 
 

1 1 1 1 EI 

 
 w = w + w 

+ w Ô = 
14839.26 

 
 

2 2 2 2 EI 

 
 w = w + w 

+ w Ô = 
9201.78 

 
 

3 3 3 3 EI 
 

Substituting into Eq. (7.28), we find the fundamental natural frequency: 
 

 

 v = b 
9.81(20 * 4862.49 + 50 * 14839.26 + 40 * 9201.78)EI 

 

20 * (4862.49)2 + 50 * (14839.26)2 + 40 * (9201.78)2 

1/2 

r 

 
 

  = 0.028222 2EI (E.12) 
 

For the shaft, E = 2.07 * 1011 N/m2 and I = p(0.1)4/64 = 4.90875 * 10-6 m4 and hence Eq. (E.12) 
gives 

 

v = 28.4482 rad/s 

* 

  

  



 

u1 
u3 

u 2 

kt 1 kt 2 

Shaft 1 Shaft 2 

J1 
J2 

J 
3 
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 Holzer s Method 
Holzer s method is essentially a trial-and-error scheme to find the natural frequencies of 

undamped, damped, semidefinite, fixed, or branched vibrating systems involving linear 

and angular displacements [7.11, 7.12]. The method can also be programmed for computer 

applications. A trial frequency of the system is first assumed, and a solution is found when 

the assumed frequency satisfies the constraints of the system. This generally requires sev- 

eral trials. Depending on the trial frequency used, the fundamental as well as the higher 

frequencies of the system can be determined. The method also gives the mode shapes. 
 

7.4.1 
Torsional 
Systems 

Consider the undamped torsional semidefinite system shown in Fig. 7.5. The equations of 

motion of the discs can be derived as follows: 

 $ 

 J1u1 + kt1(u1 - u2) = 0 

 $ 
 J2u2 + kt1(u2 - u1) + kt2(u2 - u3) = 0 

 $ 
 J3u3 + kt2(u3 - u2) = 0 

(7.29) 
 

(7.30) 
 

(7.31) 

Since the motion is harmonic in a natural mode of vibration, we assume that ui = 

®i cos(vt + f) in Eqs. (7.29) to (7.31) and obtain 

v 2J1®1 = kt1(®1 - ®2) 

 v2J2®2 = kt1(®2 - ®1) + kt2(®2 - ®3) 

v 2J3®3 = kt2(®3 - ®2) 

 

(7.32) 
 

(7.33) 
 

(7.34) 

 

Summing these equations gives 
 

3 

a v2Ji®i = 0 
i= 1 

 
(7.35) 

Equation (7.35) states that the sum of the inertia torques of the semidefinite system must 

be zero. This equation can be treated as another form of the frequency equation, and the 

trial frequency must satisfy this requirement. 

 
 

 

FIGURE 7.5 Torsional semidefinite 

system. 



 

7.4 HOLZER S METHOD 667 

In Holzer s method, a trial frequency v is assumed, and ®1 is arbitrarily chosen as unity. 

Next, ®2 is computed from Eq. (7.32), and then ®3 is found from Eq. (7.33). Thus we obtain 

 ®1 = 1 

 ®2 = ®1 - 
v2J1®1 

kt1 

(7.36) 

(7.37) 

 ®3 = ®2 - 
v2 

kt2 
 (J1®1 + J2®2) (7.38) 

These values are substituted in Eq. (7.35) to verify whether the constraint is satisfied. If 

Eq. (7.35) is not satisfied, a new trial value of v is assumed and the process repeated. 
Equations (7.35), (7.37), and (7.38) can be generalized for an n-disc system as follows: 

n 

 a v2Ji®i = 0 (7.39) 
i= 1 

v2 
 

 

 

 

i - 1 Á 
 ®i = ®i - 1 - 

kti - 1 
+ a Jk®k*,  

k= 1 
i = 2, 3,  , n (7.40) 

 

Thus the method uses Eqs. (7.39) and (7.40) repeatedly for different trial frequencies. If the 

assumed trial frequency is not a natural frequency of the system, Eq. (7.39) is not satisfied. 

The resultant torque in Eq. (7.39) represents a torque applied at the last disc. This torque Mt 

is then plotted for the chosen v. When the calculation is repeated with other values of v, the 
resulting graph appears as shown in Fig. 7.6. From this graph, the natural frequencies of the 

system can be identified as the values of v at which Mt = 0. The amplitudes ®i (i = 
1, 2, Á , n) corresponding to the natural frequencies are the mode shapes of the system. 

 

 
Mt * Mt 3 

 

 
0.19 + 107 

 
0 

 
 
 

,0.63 + 107 

 

FIGURE 7.6 Resultant torque versus 

frequency. 

w2 * 707.5 

w 

w1 * 0 w3 * 1224.7 
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Holzer s method can also be applied to systems with fixed ends. At a fixed end, the 

amplitude of vibration must be zero. In this case, the natural frequencies can be found by 

plotting the resulting amplitude (instead of the resultant torque) against the assumed fre- 

quencies. For a system with one end free and the other end fixed, Eq. (7.40) can be used for 

checking the amplitude at the fixed end. An improvement of Holzer s method is presented 

in references [7.13, 7.14]. 
 

Natural Frequencies of a Torsional System 
E X A M P L E 7 . 4    
      The arrangement of the compressor, turbine, and generator in a thermal power plant is shown in 

Fig. 7.7. Find the natural frequencies and mode shapes of the system. 

 
Solution: This system represents an unrestrained or free-free torsional system. Table 7.1 shows its 

parameters and the sequence of computations. The calculations for the trial frequencies v = 0, 10, 
20, 700, and 710 are shown in this table. The quantity Mt3 denotes the torque to the right of Station 3 

 

Stiffness, 

kt 1 * 4 MN-m /rad 

Stiffness, 

kt 2 * 2 MN-m /rad 

 
Compressor 

(J1 * 8 kg-m2) 

Turbine 

(J2 * 6 kg-m2) 

Generator 

(J3 * 4 kg-m2) 

FIGURE 7.7 Free-free torsional system. 
 

TABLE 7.1 
 

Parameters  

of the System Quantity 

 

Trial 

1 2 3 Á 71 72 
 

0 10 20 700 710 

v2 0 100 400 490000 504100 

Station 1:        

J1 = 8 ®1  1.0 1.0 1.0 1.0 1.0 

kt1 = 4 * 106 Mt1 = v2J1®1 0 800 3200 0.392E7 0.403E7 

Station 2: 

J2 = 6 ®2 = 1 - 
Mt1

 
kt1 

1.0 0.9998 0.9992 0.0200 - 0.0082 

kt2 = 2 * 106 Mt2 = Mt1 + v2J2®2 0 1400 5598 0.398E7 0.401E7 
Station 3: 

J3 = 4 ®3 = ®2 - 
Mt2 

kt2 
1.0 0.9991 0.9964 - 1.9690 - 2.0120 

Kt3 = 0 Mt3 = Mt2 + v2J3®3 0 1800 7192 0.119E6 - 0.494E5 



 

2x2 1   2 1 2     2 3 
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1.0 

 

0 

 

 
 

 

 

 
Compressor Turbine Generator 

 

FIGURE 7.8 First two flexible modes. 

 

(generator), which must be zero at the natural frequencies. Figure 7.6 shows the graph of Mt3 versus 

v. Closely spaced trial values of v are used in the vicinity of Mt3 = 0 to obtain accurate values of the 

first two flexible mode shapes, shown in Fig. 7.8. Note that the value v = 0 corresponds to the rigid- 
body rotation. 

* 

 

7.4.2 
Spring-Mass 
Systems 

Although Holzer s method has been extensively applied to torsional systems, the proce- 

dure is equally applicable to the vibration analysis of spring-mass systems. The equations 

of motion of a spring-mass system (see Fig. 7.9) can be expressed as 

 $ 
 m1x1 + k1(x1 - x2) = 0 

 m $ 
+ k (x  - x ) + k (x  - x ) = 0 

Á 

(7.41) 

 

(7.42) 

For harmonic motion, xi(t) = Xi cos vt, where Xi is the amplitude of mass mi, and 
Eqs. (7.41) and (7.42) can be written as 

 v2m1X1 = k1(X1 - X2) 

v 2m2X2 = k1(X2 - X1) + k2(X2 - 
X3) 

  = - v2m1X1 + k2(X2 - X3) 

Á 

 

(7.43) 

 
 

 
(7.44) 

 

k1 k2 kn+1 

 

X1 * 1 X2 X3 Xn 

 

FIGURE 7.9 Free-free spring mass system. 

m1 m2 m3 mn 

w2 * 707.5 
0.99 

+0.001 

 

+1.0 +1.0 

w3 * 1224.7 
+2.0 +2.0 



 

X1 

! 
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The procedure for Holzer s method starts with a trial frequency v and the amplitude of 
mass m1 as X1 = 1. Equations (7.43) and (7.44) can then be used to obtain the amplitudes 
of the masses m2, m3, Á , mi: 

 
 X2 = X1 - 

v2m1 X1 
 

k1 

 

(7.45) 

 

 X3 = X2 - 
v2 

k
 (m1X1 + m2X2) 

 
(7.46) 

2 

v2 i - 1 

 Xi = Xi- 1 - 
 

 

ki- 1 

  + a mkXk*, 
k= 1 

i = 2, 3, Á , n (7.47) 

 

As in the case of torsional systems, the resultant force applied to the last (nth) mass can be 

computed as follows: 

n 

F = a v2miXi 
i = 1 

 
(7.48) 

The calculations are repeated with several other trial frequencies v. The natural frequen- 

cies are identified as those values of v that give F = 0 for a free-free system. For this, it is 

convenient to plot a graph between F and v, using the same procedure for spring-mass sys- 
tems as for torsional systems. 

 

 

 Matrix Iteration Method 
The matrix iteration method assumes that the natural frequencies are distinct and well sep- 

arated such that v1 6 v2 6 Á 
: 

6 vn. The iteration is started by selecting a trial vector X1, 
which is then premultiplied by the dynamical matrix [D]. The resulting column vector is 

then normalized, usually by making one of its components equal to unity. The normalized 

column vector is premultiplied by [D] to obtain a third column vector, which is normalized 

in the same way as before and becomes still another trial column vector. The process is 

repeated until the successive normalized column vectors converge to a common vector: the 

fundamental  eigenvector.  The  normalizing  factor  gives  the  largest  value  of  l = 1/v2   
that is, the smallest or the fundamental natural frequency [7.15]. The convergence of the 
process can be explained as follows. 

According to the expansion theorem, any arbitrary n-dimensional vector  
:  

can 

be! expressed as a linear combination of the n orthogonal eigenvectors of the system 

X(i), i = 1, 2, Á , n: 
! ! ! ! 

X1 = c1X(1) + c2X(2) + Á + cnX
(n)

 
(7.49) 

! 
 

 

where c1, c2, Á , cn are constants. In the iteration method, the trial vector X1 is selected 
arbitrarily and is therefore a known vector. The modal vectors X(i), although unknown, are 

constant vectors because they depend upon the properties of the system. The constants ci 



 

v 

v 

v v 

v v v 

v v 

! 
(i) 
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are un! known numbers to be determined. According to the iteration method, we premulti- 
ply X1 by the matrix [D]. In view of Eq. (7.49), this gives 

! ! ! ! 

[D]X1 = c1[D]X(1) + c2[D]X(2) + Á + cn[D]X(n) 
(7.50) 

Now, according to Eq. (6.66), we have 

 
   

[D]X = li[I]X = 
2
 X ; 

i 
i = 1, 2, Á , n (7.51) 

Substitution of Eq. (7.51) into Eq. (7.50) yields 
! ! 

  

 [D]X1 = X2 

c1 ! c2  ! 
 

 

cn  ! 
 

 

  = 
2

 
1 

! 
 

 X(1) +  X(2) + Á + 
2 
2 

 X(n) 
2 
n 

(7.52) 

! 
 

where X2 is the second trial vector. We now repeat the process and premultiply X2 by [D] 

to obtain, by Eqs. (7.49) and (6.66), 
! ! 

  

 [D]X2 = X3 

  = 
c1

 
 

 

 

! 
(1) 

 

! 2 (2) Á 
 

 
 

 

! n (n) 
 

 
 

4
 X 

1 

+ 
4

 X + 
2 

+ 
4

 X 
n 

(7.53) 

By repeating the process we obtain, after the rth iteration, 
! ! 

  

 [D]Xr = Xr+ 1 

c1 

 

! 
(1) 

 

! 2 (2) Á 
 

 
 

 

! n (n) 
 

 
   = 

2r
 X 

1 

+ 
2r

 X + 
2 

+ 
2r

 X 
n 

(7.54) 

Since the natural frequencies are assumed to be v1 6 v2 6 Á 6 vn, a sufficiently large 
value of r yields 

 
1 1 
2r  

W 
2r 

1 2 

W Á W  
1

 
2r 
n 

 
(7.55) 

Thus the first term on the right-hand side of Eq. (7.54) becomes the only significant one. 

Hence we have 
! 

= 
c1 

 ! 
(1) 

Xr+ 1 2r
 X 

1 

(7.56) 

which means that the (r + 1)th trial vector becomes identical to the fundamental modal 
vector to within a multiplicative constant. Since 

! c1
 

 

! 
(1) 

Xr =  X 
2(r- 1) 
1 

(7.57) 

v v 

v 

v 

v 

v 

! 
(i) 

! 
(i) 

1 

c c 

c c 



 

! 

  
1 

1 

! 

! 

1 

n 

       

-1 -1 

! 
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the fundamental natural frequency v1! can be found by taking the ratio of any two corre- 

sponding components in the vectors Xr and Xr+1: 

Xi, r 

v2 M ,  
Xi, r+ 1 

for any i = 1, 2, Á , n (7.58) 

! ! 
  

where Xi, r and Xi, r+ 1 are the ith elements of the vectors Xr and Xr+ 1, respectively. 
 

Discussion 

1. In the abo!ve proof, nothing has been said about the normalization of the successive trial 
vectors Xi. Actually, it is not necessary to establish the proof of convergence of the 

method. The normalization amounts to a readjustment of the constants c1, c2, Á , cn in 
each iteration. 

2. Although it is theoretically necessary to have r : q for the convergence of the 

method, in practice only a finite number of iterations suffices to obtain a reasonably 

good estimate of v1. 
3. The actual number of iterations necessary to find the value of v to within a desired 

! 
degree of accuracy depends on how closely the arbitrary trial vector X1 resembles the 

fundamental mode X(1) and on how well v1 and v2 are separated. The required number 

of iterations is less if v2 is very large compared to v1. 
4. The method has a distinct advantage in that any computational errors made do not 

! 
yield incorrect results. Any error made in premultiplying Xi by [D] results in a vector 

 

other than the desired one, Xi+1. But this wrong vector can be considered as a new trial 
vector. This may delay the convergence but does not produce wrong results. 

! 
5. One can take any set of n numbers for the first trial vector X1 and still achieve conver- 

gence to the fundamental modal vector. Only in the unusual case in which the trial 
! ! 

vector X is exactly proportional to one of the modes X(i)
 (i Z 1) does the method fail 

! 
to converge to the first mode. In such a case, the premultiplication of X(i) by [D] 

! 
results in a vector proportional to X(i) itself. 

 

7.5.1 
Convergence 
to the Highest 

To obtain the highest natural frequency v and the corresponding mode shape or eigenvec- 
! 

tor X(n) by the matrix iteration method, we first rewrite Eq. (6.66) as 
! ! ! 

 

   

Natural 
Frequency 

[D] -1
 X = v2[I]X = v2X 

where [D] - 1 is the inverse of the dynamical matrix [D] given by 

[D] = [m] [k] 
! 

 

 

(7.59) 
 

 
 

(7.60) 

Now we select any ar!bitrary trial vector X1  and prem!ultiply it by [D] - 
1 to obtain an 

improved trial vector X2. The sequence of trial vectors Xi + 1 (i = 1, 2, Á ) obtained by pre- 

multiplying by [D] - 1 converges to the highest normal mode X(n). It can be seen that the 
procedure is similar to the one already described. The constant of proportionality in this 

case is v2 instead of 1/v2. 



 

1 

! ! 
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7.5.2 
Computation 
of Intermediate 
Natural 
Frequencies 

Once the first natural fre! quency v1 (or the largest eigenvalue l1  = 1/v2) and the corre- 
sponding eigenvector X(1) are determined, we can proceed to find the higher natural 

frequencies and the corresponding mode shapes by the matrix iteration method. Before we 

proceed, it should be remembered that any arbitrary trial vector premultiplied by [D] 

would lead again to the largest eigenvalue. It is thus necessary to remove the largest eigen- 

value from the matrix [D]. The succeeding eigenvalues and eigenvectors can be obtained 

by eliminating the root l1 from the characteristic or frequency equation 

[D] - l[I]  = 0 (7.61) 

A procedure k! nown as matrix deflation can be used for this pur! pose [7.16]. To find the 
eigenvector X(i) by this procedure, the previous eigenvector X(i-1) is normalized with 
respect to the mass matrix such that 

! ! 
X(i - 1)T[m]X(i - 1) = 1 (7.62) 

 

The deflated matrix [Di] is then constructed as 
 

[D ] = [D ] - l X(i- 1)
 X(i- 1)T[m], i = 2, 3, Á , n (7.63) 

i i- 1 i- 1  

 

where [D1] = [D]. Once [Di] is constructed, the iterative scheme 
! ! 

  

Xr+ 1 = [Di]Xr 

! 
 

(7.64) 

is used, where X1 is an arbitrary trial eigenvector. 
 

 
Natural Frequencies of a Three-Degree-of-Freedom System 

E X A M P L E 7 . 5    
      Find the natural frequencies and mode shapes of the system shown in Fig. 7.2 for k1 = k2 = k3 = k 

and m1 = m2 = m3 = m by the matrix iteration method. 

Solution: The mass and stiffness matrices of the system are given in Example 7.2. The flexibility 

matrix is 
 

1 1 1 
[a] = [k]- 1 = 

1
 C 1 2 2 S 

 

 
(E.1) 

k 
1 2 3 

 

and so the dynamical matrix is 
 

1 1 1 
[k] - 1[m] = 

m
 C 1 2 2 S 

 
(E.2) 

k 
1 2 3 
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The eigenvalue problem can be stated as   

! ! 

[D]X = lX  (E.3) 

where 
   

1 1 1 
 

[D] = C 1 2 2 S (E.4) 

1 2 3  

 
and 

   

 

l = 
k # 1 

 

 
(E.5) 

m v2 
 

First Natural Frequency: By assuming the first trial eigenvector or mode shape to be 
 

! 1 
 

X1 = c 1 s 
1 

(E.6) 

 

the second trial eigenvector can be obtained: 
 

! ! 3 
  

X2 = [D]X1 = c 5 s 
6 

(E.7) 

 

By making the first element equal to unity, we obtain 
 

! 1.0000 
 

X2 = 3.0 c 1.6667 s 
2.0000 

(E.8) 

 

and the corresponding eigenvalue is given by 

 
k 

l1  M 3.0 or v1  M 0.5773 
Am

 (E.9) 

 

The subsequent trial eigenvector can be obtained from the relation 

! ! 
  

Xi+ 1 = [D]Xi (E.10) 
 

and the corresponding eigenvalues are given by 
 

l1  M X1, i + 1 
(E.11) 
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! 
where X1, i+1 is the first component of the vector Xi+1 before normalization. The various trial 
eigenvectors and eigenvalues obtained by using Eqs. (E.10) and (E.11) are shown in the table 

below. 

 
 

! ! ! 
   

i Xi with X1,i = 1 Xi + 1 = [D]Xi L1  M X1, i *1 V1 

 
 

 

k 

Am 
 
 

k 

m 

 
 

k 

m 

 

 
 
 
 
 

k 

m 

 
 

k 

m 

 
 

It can be seen that the mode shape and the natural frequency converged (to the fourth decimal place) 

in eight iterations. Thus the first eigenvalue and the corresponding natural frequency and mode shape 

are given by 
 

 

 l1 = 5.04892,  

 
 

k 

v1 = 0.44504 
Am

 
 

! 1.00000 

 X(1) = c 1.80194 s 
2.24698 

(E.12) 

 

Second Natural Frequency: To compute the second eigenvalue and the eigenvector, we must first 

produce a deflated matrix: 

! ! 

[D2]  =  [D1]  - l1X
(1)X(1)T[m] (E.13) 

 

1 

1 

c 1 s 

3 

c 5 s 

 

3.0 

 

0.5773   

   

 1 6     

 1.00000 4.66667     

2 c 1.66667 s 
2.00000 

c 8.33333 s 
10.33333 

4.66667 0.4629   

A 

  

 
1.0000 5.00000 

    

3 c 1.7857 s 
2.2143 

c 9.00000 s 
11.2143 

5.00000 0.4472   
A 

  

. 

. 

. 

      

 
1.00000 5.04891 

    

7 c 1.80193 s 
2.24697 

c 9.09781 s 
11.34478 

5.04891 0.44504  
A 

  

 
1.00000 5.04892 

     

8 c 1.80194 s 
2.24698 

c 9.09783 s 
11.34481 

5.04892 0.44504  

A 
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! ! ! 

This equation, however, calls for a normalized vector X(1) satisfying X(1)T[m]X(1) = 1. Let the nor- 
malized vector be denoted as 

 

! 1.00000 

X(1) = ac 1.80194 s 
2.24698 

 

where a is a constant whose value must be such that 

 
! ! 1.00000   T  1 

 X(1)T[m]X(1) = a2m c 1.80194 s C 0 
2.24698 0 

  = a2m(9.29591) = 1 

 

(E.14) 

from which we obtain a = 0.32799m-1/2. Hence the first normalized eigenvector is 
 

! 0.32799 

X(1) = m-1/2c 0.59102 s 
0.73699 

(E.15) 

 

Next we use Eq. (E.13) and form the first deflated matrix: 

 
1 1 1 

 
0.32799 

 
0.32799 

 
T  1 0 0 

 [D2] = C 1 2 2 S - 5.04892 c 0.59102 s c 0.59102 s C 0 1 0 S 

1 2 3 0.73699 0.73699 0 0 1 
 

 0.45684 0.02127 - 0.22048  

  = C 0.02127 0.23641 - 0.19921 S (E.16) 
 - 0.22048 - 0.19921 0.25768  

 

Since the trial vector can be chosen arbitrarily, we again take 
 

! 1 
 

X1 = c 1 s 
1 

(E.17) 

 

By using the iterative scheme 

! ! 
  

 

! 
we obtain X2 

 
 
 

 
! 

X2  = c 

Xi+ 1  = [D2]Xi 

 

 
0.25763 

0.05847 s = 0.25763 c 

- 0.16201 

 
 
 
 

1.00000 

0.22695 s 

- 0.62885 

(E.18) 
 
 

 

 
(E.19) 

0 0 1.00000 

1 0 S c 1.80194 s 

0 1 2.24698 
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Hence l2 can be found from the general relation 

l2 M X1, i + 1 
(E.20) 

as 0.25763. Continuation of this procedure gives the results shown in the table below. 

! ! ! 
   

i Xi with X1, i + 1 Xi*1  + [D2]Xi L2 M X1, i*1 V2 

 

1 

1 c 1 s c 
1 

 

0.25763 
k 

0.05847 s 0.25763 1.97016  
Am 

- 0.16201 

1.00000 

2 c   0.22695 s c 

- 0.62885 

0.60032 
k 

0.20020 s 0.60032 1.29065  
Am 

- 0.42773 

 

 

 

 
 

 

 

Am 

 
 

 

 

 

 
Thus the converged second eigenvalue and the eigenvector are 

 
k 

 l2 = 0.64307, 

 
! 

X(2) = c 

v2 = 1.24701 
Am

 

1.00000 

0.44496 s 

- 0.80192 

 
 
 
 

(E.21) 

 

Third Natural Frequency: For the third eigenvalue and the eigenvector, we use a similar procedure. 

The detailed calculations are left as a!n exercise to the reader. Note that before computing the deflated 
matrix [D3], we need to normalize X(2) by using Eq. (7.62), which gives 

 
 

! 
X(2)  = m-1/2 c 

0.73700 

0.32794 s 

- 0.59102 

 

(E.22) 
 

 
* 

. 

. 

. 

 

 

10 

 

c 

1.00000 

0.44443 s 

0.64300 

c 0.28600 s 

 
 

0.64300 

 
k 

1.24708  
  

- 0.80149 - 0.51554 
  

 

11 

 

c 
1.00000 
0.44479 s 

0.64307 
c 0.28614 s 

 

0.64307 

 
k 

1.24701  

- 0.80177 
Am 

- 0.51569 

 



 

2dij 

dii - djj 
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 Jacobi s Method 
The matrix iteration method described in the preceding section produces the eigenvalues 

and eigenvectors of matrix [D] one at a time. Jacobi s method is also an iterative method 

but produces all the eigenvalues and eigenvectors of [D] simultaneously, where 

[D] = [dij] is a real symmetric matrix of order n * n. The method is based on a theorem 
in linear algebra stating that a real symmetric matrix [D] has only real eigenvalues and that 

there exists a real orthogonal matrix [R] such that [R]T[D][R] is diagonal [7.17]. The 

diagonal elements are the eigenvalues, and the columns of the matrix [R] are the eigenvec- 

tors. According to Jacobi s method, the matrix [R] is generated as a product of several rota- 

tion matrices [7.18] of the form 
 

ith column jth column 
 

1 0 

0 1 

[R1] = H 
n * n 

 

 

 

 

cos u - sin u 
 

 

sin u cos u 
 

 

 

 

  

 

 

 

 

 

ith row 

X 

jth row 

 
1 

 

 

 

 

 
(7.65) 

 

where all elements other than those appearing in columns and rows i and j are identical 

with those of the identity matrix [I]. If the sine and cosine entries appear in positions (i, i), 

(i, j), (j, i), and (j, j), then the corresponding elements of [R1]T[D][R1] can be computed as 

follows: 

 dii = dii cos2 u + 2dij sin u cos u + djj sin2 u 

 dij = dji = (djj - dii) sin u cos u + dij( cos2 u - sin2 u) 

 djj = dii sin2 u - 2dij sin u cos u + djj cos2 u 

If u is chosen to be 

 

(7.66) 

 
(7.67) 

(7.68) 

 

tan 2u = ¢ (7.69) 

 

then it makes dij = dji = 0. Thus each step of Jacobi s method reduces a pair of off- 

diagonal elements to zero. Unfortunately, in the next step, while the method reduces a new 
pair of zeros, it introduces nonzero contributions to formerly zero positions. However, suc- 

cessive matrices of the form 
 

[R2]T[R1]T[D][R1][R2],  

 
[R3]T[R2]T[R1]T[D][R1][R2][R3], Á 





 

2d13 

d11 - d33 
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converge to the required diagonal form; the final matrix [R], whose columns give the 

eigenvectors, then becomes 

[R] = [R1][R2][R3] Á (7.70) 

 

Eigenvalue Solution Using Jacobi Method 
E X A M P L E 7 . 6    
      Find the eigenvalues and eigenvectors of the matrix 

 
 1 1 1 

[D] = C 1 2 2 S 

 
 

using Jacobi s method. 

1 2 3 

 

Solution: We start with the largest off-diagonal term, d23 = 2, in the matrix [D] and try to reduce it 
to zero. From Eq. (7.69), 

 

= 
1

 tan-1 ¢ 
1 2 

= 
1

 tan-1 ¢ 
2 

 

= - 37.981878° 

 
1.0 0.0 0.0 

 [R1] = C 0.0 0.7882054 0.6154122 S 
0.0 - 0.6154122 0.7882054 

 

1.0 0.1727932 1.4036176 

 [D¿]  = [R1]T[D][R1]  =  C 0.1727932 0.4384472 0.0 S 
1.4036176 0.0 4.5615525 

 

Next we try to reduce the largest off-diagonal term of [D ] 

Equation (7.69) gives 
namely, d13 = 1.4036176 to zero. 

 

= 
1

 tan-1 ¢ 
2 2 

 
 

= 
1

 tan-1 ¢ 
2 

 

= - 19.122686° 

 

       0.9448193 0.0 0.3275920 

 [R2] = C   0.0 1.0 0.0 S 

- 0.3275920 0.0 0.9448193 

 
0.5133313 0.1632584 0.0 

 [D  ]  = [R2]
T[D¿][R2]  =  C 0.1632584 0.4384472 0.0566057 S 

0.0 0.0566057 5.0482211 

2.8072352 

1.0 - 4.5615525 

2d23 

d22 - d33 

4 

2 - 3 



 

2d12 

d11  - d22 
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The largest off-diagonal element in [D ] is d12 = 0.1632584. u3 can be obtained from Eq. (7.69) as 

 
 

 u3 
= 

1
 tan-1 ¢ 

2 

 
 

= 
1

 tan-1 ¢ 
2 

 

= 38.541515° 

 
0.7821569 - 0.6230815 0.0 

 [R3] = C 0.6230815        0.7821569 0.0 S 
0.0        0.0 1.0 

 

0.6433861 0.0 0.0352699 

 [D ] = [R3]T[D ][R3] = C 0.0 0.3083924 0.0442745 S 
0.0352699 0.0442745 5.0482211 

 

Assuming that all the off-diagonal terms in [D ] are close to zero, we can stop the process here. The 

diagonal elements of [D ] give the eigenvalues (values of 1/v2) as 0.6433861, 0.3083924, and 
5.0482211. The corresponding eigenvectors are given by the columns of the matrix [R], where 

 
0.7389969 - 0.5886994 0.3275920 

[R] = [R1][R2][R3] = C  0.3334301 0.7421160 0.5814533 S 

- 0.5854125 - 0.3204631 0.7447116 
 

The iterative process can be continued for obtaining a more accurate solution. The present eigenval- 

ues can be compared with the exact values: 0.6431041, 0.3079786, and 5.0489173. 

* 
 

 

 Standard Eigenvalue Problem 
In the preceding chapter, the eigenvalue problem was stated as 

! ! 

[k]X = v2[m]X (7.71) 

 

which can be rewritten in the form of a standard eigenvalue problem [7.19] as 

! ! 
  

[D] X = lX (7.72) 
 

where 
 

[D] = [k] - 1[m] 

 

(7.73) 

 

and 
 

1 
l = (7.74) 

v2 

0.3265167 

0.5133313 - 0.4384472 



 

a membrane are derived by considering the free-body diagram of an infinitesimally small 
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element of the particular system and applying the Newton s second law of motion. The free- 

vibration solution of the system is found by assuming harmonic motion and applying the 

relevant boundary conditions. The solution gives infinite number of natural frequencies and 

the corresponding mode shapes. The free-vibration displacement of the system is found as a 

linear superposition of the mode shapes, the constants involved being determined from the 

known initial conditions of the system. In the case of transverse vibration of a string of infi- 

nite length, the traveling-wave solution is presented. In the case of the longitudinal vibration 

of a bar, the vibration response under an initial force is also found. In the case of the trans- 

verse vibration of beams, all the common boundary conditions are summarized and the 

orthogonality of normal modes is proved. The forced vibration of beams is presented using 

the mode superposition method. The effect of axial force on the natural frequencies and 

mode shapes of beams is considered. The thick beam theory, also called the Timoshenko 

beam theory, is presented by considering the effects of rotary inertia and shear deformation. 

The free vibration of rectangular membranes is presented. Rayleigh s method, based on 

Rayleigh s quotient, for finding the approximate fundamental frequencies of continuous 

systems is outlined. The extension of the method, known as the Rayleigh-Ritz method, is 

outlined for determining approximate values of several frequencies. Finally, MATLAB 

solutions are presented for the free and forced vibration of typical continuous systems. 

 

Learning Objectives 

After you have finished studying this chapter, you should be able to do the following: 

● Derive the equation of motion of a continuous system from the free-body diagram of 

an infinitesimally small element of the system and Newton s second law. 

● Find the natural frequencies and mode shapes of the system using harmonic solution. 

● Determine the free-vibration solution using a linear superposition of the mode shapes 

and the initial conditions. 

● Find the free-vibration solutions of string, bar, shaft, beam, and membrane problems. 

● Express the vibration of an infinite string in the form of traveling waves. 

● Determine the forced-vibration solution of continuous systems using mode 

superposition method. 

● Find the effects of axial force, rotary inertia, and shear deformation on the vibration 

of beams. 

● Apply the Rayleigh and Rayleigh-Ritz methods to find the approximate natural 

frequencies of continuous systems. 

● Use MATLAB to find the natural frequencies, mode shapes, and forced response of 

continuous systems. 

 

 Introduction 
We have so far dealt with discrete systems where mass, damping, and elasticity were 

assumed to be present only at certain discrete points in the system. In many cases, known 

as distributed or continuous systems, it is not possible to identify discrete masses, dampers, 
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or springs. We must then consider the continuous distribution of the mass, damping, and 

elasticity and assume that each of the infinite number of points of the system can vibrate. 

This is why a continuous system is also called a system of infinite degrees of freedom. 

If a system is modeled as a discrete one, the governing equations are ordinary differen- 

tial equations, which are relatively easy to solve. On the other hand, if the system is modeled 

as a continuous one, the governing equations are partial differential equations, which are 

more difficult. However, the information obtained from a discrete model of a system may not 

be as accurate as that obtained from a continuous model. The choice between the two models 

must be made carefully, with due consideration of factors such as the purpose of the analysis, 

the influence of the analysis on design, and the computational time available. 

In this chapter, we shall consider the vibration of simple continuous systems 

strings, bars, shafts, beams, and membranes. A more specialized treatment of the vibra- 

tion of continuous structural elements is given in references [8.1 8.3]. In general, the 

frequency equation of a continuous system is a transcendental equation that yields an infi- 

nite number of natural frequencies and normal modes. This is in contrast to the behavior 

of discrete systems, which yield a finite number of such frequencies and modes. We need 

to apply boundary conditions to find the natural frequencies of a continuous system. The 

question of boundary conditions does not arise in the case of discrete systems except in an 

indirect way, because the influence coefficients depend on the manner in which the sys- 

tem is supported. 

 

 

8.2 Transverse Vibration of a String or Cable 

8.2.1 
Equation of 
Motion 

Consider a tightly stretched elastic string or cable of length l subjected to a transverse 

force f(x, t) per unit length, as shown in Fig. 8.1(a). The transverse displacement of the 

string, w(x, t), is assumed to be small. Equilibrium of the forces in the z direction gives 

(see Fig. 8.1(b)): 

The net force acting on an element is equal to the inertia force acting on the element, or 

02w 

(P + dP) sin(u + du) + f dx - P sin u = r dx 
0t2

 (8.1) 

where P is the tension, r is the mass per unit length, and u is the angle the deflected string 
makes with the x-axis. For an elemental length dx, 

 

 

dP = 
0P 

 dx 
0x 

0w 

 
(8.2) 

 

 
and 

s in u M tan u = 
0x 

(8.3) 

 

 

sin (u + du) M tan (u + du) = 
0w 02w 

0x 
+ 

0x2
 dx 

 
(8.4) 



 

f(x, t) 

A 
B 

x dx 

l 

f(x, t) 
P     dP 

B 
u  du 

u 
ds 

A 
P 

w w  dw 

x x    dx 
dx 
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z, w (x, t) 

 

 
 

O x 

 

 
 

(a) 

z, w (x, t) 

 

 

 

 

 
x 

O 

(b) 
 

FIGURE 8.1 A vibrating string. 

 

 

Hence the forced-vibration equation of the nonuniform string, Eq. (8.1), can be simplified to 
 

0 
  BP   

0x 

 

0w(x, t) 
R + f(x, t) = r(x)  

0x 

02w(x, t) 

0t2 

 

(8.5) 

 

If the string is uniform and the tension is constant, Eq. (8.5) reduces to 

02w(x, t) 

P 
0x2 

+ f(x, t) = r  

02w(x, t) 

0t2 

 

(8.6) 

If f(x,t) = 0, we obtain the free-vibration equation 

02w(x, t) 

P 
0x2 

= r  

02w(x, t) 

0t2 

 

(8.7) 

 

or 
 

2 0
2w 

c 
0x2 

= 

 

 

02w 
 

0t2 

 

 
 

(8.8) 



 

w0 
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where 

c = + 

 

 

P  1/2 

* 
r 

 

 
 

(8.9) 

 

Equation (8.8) is also known as the wave equation. 

 

 
8.2.2 
Initial and 
Boundary 
Conditions 

 
The equation of motion, Eq. (8.5) or its special forms (8.6) and (8.7), is a partial differen- 

tial equation of the second order. Since the order of the highest derivative of w with respect 

to x and t in this equation is two, we need to specify two boundary and two initial condi- 
tions in finding the solution w(x, t). If the string has a known deflection w0(x) and veloc- 

ity 
# 

(x) at time t = 0, the initial conditions are specified as 
 

w (x, t = 0) = w0(x) 
 

0w # 
      (x, t = 0) = w 0(x) 
0t 

(8.10) 

 

If the string is fixed at an end, say x = 0, the displacement w must always be zero, and so 
the boundary condition is 

w(x = 0, t) = 0,  t Ú 0 (8.11) 

 

If the string or cable is connected to a pin that can move in a perpendicular direction as 

shown in Fig. 8.2, the end cannot support a transverse force. Hence the boundary condition 

becomes 

P(x)  

0w(x, t) 
= 0 

0x 
(8.12) 

 

 

z, w 

 

 

 

 

 

 

 

 
P 

 

FIGURE 8.2 String connected to pins at 

the ends. 

P 

Slot 

*w 
*x 

x 

Slot 

*w 
*x 



 

k 

l 
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z, w 

 

 

 

 
x 

 

 

FIGURE 8.3 String with elastic constraint. 

 

 

If the end x = 0 is free and P is a constant, then Eq. (8.12) becomes 

0w(0, t) 
= 0,  

0x 
t Ú 0 (8.13) 

If the end x = l is constrained elastically as shown in Fig. 8.3, the boundary condition 

becomes    
0w(x, t) 

P(x)  ` 
0x x= l 

=  - 'k w(x, t) x= l,  t Ú 0 (8.14) 

where  'k is the spring constant. 

 
 

8.2.3 
Free Vibration 
of a Uniform 

The free-vibration equation, Eq. (8.8), can be solved by the method of separation of vari- 

ables. In this method, the solution is written as the product of a function W(x) (which 

depends only on x) and a function T(t) (which depends only on t) [8.4]: 

String 
w(x, t) = W(x)T(t) 

Substitution of Eq. (8.15) into Eq. (8.8) leads to 

(8.15) 

c2   d2W 

W
 
dx2 

= 

 

1 d2T 
 

T
 
dt2 

 

(8.16) 

Since the left-hand side of this equation depends only on x and the right-hand side depends 

only on t, their common value must be a constant say, a so that 

c2   d2W 

W
 
dx2 

= 
1 d2T 

T
 
dt2   

= a 

 
(8.17) 

 

The equations implied in Eq. (8.17) can be written as 
 

d2W 

dx2 
-

 

a 

c2
 W = 0 

 
(8.18) 
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d2T 

dt2   
- aT = 0 (8.19) 

Since the constant a is generally negative (see Problem 8.9), we can set a = - v2 and 
write Eqs. (8.18) and (8.19) as 

d2W 

dx2 
+

 
d2T 

v2 

c2
 W = 0 

2 

 

(8.20) 

dt2   
+ v T    = 0 

(8.21) 

 

The solutions of these equations are given by 

vx 
W(x) = A cos  

c 

 

 
vx 

+ B sin  
c 

 

 
 

(8.22) 

T(t)      = C cos vt + D sin vt (8.23) 
 

where v is the frequency of vibration and the constants A, B, C, and D can be evaluated 
from the boundary and initial conditions. 

 

8.2.4 
Free Vibration  

If the string is fixed at both ends, the boundary conditions are w(0, t) = w(l, t) = 0 for 

all time t Ú 0. Hence, from Eq. (8.15), we obtain 

of a String with 
Both Ends Fixed W(0) = 0 

W(l) = 0 

(8.24) 

(8.25) 

In order to satisfy Eq. (8.24), A must be zero in Eq. (8.22). Equation (8.25) requires that 

vl 

B sin  = 0 
c 

(8.26) 

Since B cannot be zero for a nontrivial solution, we have 

vl 

sin  = 0 
c 

(8.27) 

Equation (8.27) is called the frequency or characteristic equation and is satisfied by sev- 

eral values of v. The values of v are called the eigenvalues (or natural frequencies or 
characteristic values) of the problem. The nth natural frequency is given by 

vnl 

c 

or 

 

= np,  

 
 

ncp 
 

 

 

n = 1, 2, Á 

  
vn  = 

l 
,  n = 1, 2, Á (8.28) 



 

n * 1 

x 

l 

n * 2 

x 
l 

l 
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The solution wn(x, t) corresponding to vn can be expressed as 
 

 
wn(x, t) = Wn(x)Tn(t) = sin  

npx 

l  
  BCn cos  

ncpt 

l 
+ Dn sin  

ncpt 
R
 

l 

 
(8.29) 

 

where Cn and Dn are arbitrary constants. The solution wn(x, t) is called the nth mode of 

vibration or nth harmonic or nth normal mode of the string. In this mode, each point of the 

string vibrates with an amplitude proportional to the value of Wn at that point, with the cir- 

cular  frequency  vn  =  (ncp)/l.  The  function  Wn(x)  is  called  the  nth  normal  mode,  or 

characteristic function. The first three modes of vibration are shown in Fig. 8.4. The mode 

corresponding to n = 1 is called the fundamental mode, and v1 is called the fundamental 

frequency. The fundamental period is 

 
T1 = 

2p 2l 
= 

v1 c 
 

The points at which wn = 0 for all times are called nodes. Thus the fundamental mode has 

two nodes, at x = 0 and x = l; the second mode has three nodes, at x = 0, x = l/2, and 

x = l; etc. 

The general solution of Eq. (8.8), which satisfies the boundary conditions of Eqs. (8.24) 

and (8.25), is given by the superposition of all wn(x, t): 

 
 

wn 

 

 

 

O 

 

wn 

 

 
 

O 

2 
n 

 

 

 
 

 

 

O 

3 3 
 

FIGURE 8.4 Mode shapes of a string. 
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q 

 w(x, t) = a wn(x, t) 
n = 1 

 

q 

  = a sin  

n = 1 

 

npx 

l  
  B Cn cos  

 

ncpt 

l 
+ Dn sin  

ncpt 
R
 

l 

 

(8.30) 

 

This equation gives all possible vibrations of the string; the particular vibration that occurs 

is uniquely determined by the specified initial conditions. The initial conditions give 

unique values of the constants Cn and Dn. If the initial conditions are specified as in Eq. (8.10), 

we obtain 

q 

 a Cn sin  
n = 1 

npx 

l 
= w0(x) 

 
(8.31) 

q ncp npx # 

 a   

n = 1 
l  

Dn sin  
l 

= w 0(x) (8.32) 

which can be seen to be Fourier sine series expansions of w (x) and #
  (x) in the interval 

0 w0 

0 x l. The values of Cn and Dn can be determined by multiplying Eqs. (8.31) and 

(8.32) by sin(npx/l) and integrating with respect to x from 0 to l: 

2 
l 

 
npx 

Cn = 
l L 

w0(x) sin   dx 
l 

(8.33) 

 

Dn = 

 

2 
 

 

ncp L0 

 l 
#
 

w 0(x) sin  npx 

l 

 
 dx 

 
(8.34) 

Note: The solution given by Eq. (8.30) can be identified as the mode superposition method 

since the response is expressed as a superposition of the normal modes. The procedure is 

applicable in finding not only the free-vibration solution but also the forced-vibration solu- 

tion of continuous systems. 

 

 

Dynamic Response of a Plucked String 
E X A M P L E 8 . 1    
      If a string of length l, fixed at both ends, is plucked at its midpoint as shown in Fig. 8.5 and then 

released, determine its subsequent motion. 

 
Solution: The solution is given by Eq. (8.30) with Cn and Dn given by Eqs. (8.33) and (8.34), 

respectively. Since there is no initial velocity, w0(x) = 0, and so Dn = 0. Thus the solution of Eq. 
(8.30) reduces to 

q 

w(x, t) = a Cn sin  
n = 1 

npx 
 cos  

l 

ncpt 
l 

 
(E.1) 



 

0 
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w0(x, 0) 

 

 

 

 

x 
O 

 

FIGURE 8.5 Initial deflection of the string. 

 

where  

2 
l 

 

 
npx 

Cn = 
l L

 w0(x) sin   dx 
l 

(E.2) 

 

The initial deflection w0(x) is given by 

2hx
             

l 

 
 
 
 

l 
 for 0 x 2 

 w0(x) = d 
2h(l - x) 

l l for x l 
2 

(E.3) 

By substituting Eq. (E.3) into Eq. (E.2), Cn can be evaluated: 

2 
l/2 

2hx
 
 

npx 
 l 

2h 
 

npx 

 Cn =   b 
l L0 

 
8h 

  

 

 

 

 sin  

 sin  
l 

 

np  
  dx +      (l -  x) sin 

l Ll/2   l 

 
for n = 1, 3, 5, Á 

  dx r 
l 

  = 
c p2n2 2 

(E.4) 

By using the relation 

0 for n = 2, 4, 6,  Á 

sin 
np  

= (- 1)(n- 1)/2,  n  = 1, 3, 5,  Á (E.5) 
2 

the desired solution can be expressed as 
 

w(x, t) = 
8h 

b sin 
px

 cos 
pct 

- 
1

 sin 
3px

 cos 
3pct 

+ Ár 
      

 
 
 

 
(E.6) 

p2 l l 9 l l 
 

In this case, no even harmonics are excited. 

 

* 

h 

l 
2 

l 
2 

l 
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8.2.5 
Traveling-Wave 

The solution of the wave equation, Eq. (8.8), for a string of infinite length can be 

expressed as [8.5] 

Solution w(x, t) = w1(x - ct) + w2(x + ct) (8.35) 

where w1 and w2 are arbitrary functions of (x - ct) and (x + ct), respectively. To show 
that Eq. (8.35) is the correct solution of Eq. (8.8), we first differentiate Eq. (8.35): 

02w(x, t) 

0x2 
= w 1 (x - ct) + w 2(x + ct) 

02w(x, t) 

(8.36) 

0t2 
= c2w 1 (x  - ct)  + c2w 2(x  + ct) (8.37) 

Substitution of these equations into Eq. (8.8) reveals that the wave equation is satisfied. In 

Eq. (8.35), w1(x - ct) and w2(x + ct) represent waves that propagate in the positive and 
negative directions of the x-axis, respectively, with a velocity c. 

For a given problem, the arbitrary functions w1 and w2 are determined from the initial 

conditions, Eq. (8.10). Substitution of Eq. (8.35) into Eq. (8.10) gives, at t = 0, 

w1(x) + w2(x) = w0(x) 
# 

- cw1(x) + cw 2(x) = w0(x) 

(8.38) 

(8.39) 

where the prime indicates differentiation with respect to the respective argument at t = 0 

(that is, with respect to x). Integration of Eq. (8.39) yields 

1 
- w1(x) + w2(x) = 

 

x 
#
 

w  0(x¿) dx¿ 
 

(8.40) 

c Lx0 

where x0 is a constant. Solution of Eqs. (8.38) and (8.40) gives w1 and w2: 

 
 w1(x) = 

1 1 
x
 

2
 B w0(x) - 

c L
 

 

# 
w 0(x¿) dx¿ R 

 
(8.41) 

x0 

1 1 
x 

# 

 w2(x) = 
2

 B w0(x) + 
 

 

c Lx0 

w 0(x¿) dx¿ R (8.42) 

 

By replacing x by (x - ct) and (x + ct), respectively, in Eqs. (8.41) and (8.42), we 
obtain the total solution: 

 

 w(x, t) = w1(x - ct) + w2(x + ct) 
 

1 

 

 
1 

x+ ct 
#
 

  = 
2

 [w0(x - ct) + w0(x + ct)] +  
 

2c Lx - ct 

w0(x¿) dx¿ (8.43) 



 

a c 

x 
b 

dx 
d 

l 

c c* 
pos 

P P + dP 

d d* 
b b* 

dx 
u u + du 

 # 
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The following points should be noted: 

1. As can be seen from Eq. (8.43), there is no need to apply boundary conditions to the 

problem. 

2. The solution given by Eq. (8.43) can be expressed as 

w(x, t) = wD(x, t) + wV(x, t) 
 

(8.44) 

where wD(x, t) denotes the waves propagating due to the known initial displacement 

w0(x) with zero initial velocity, and wV(x, t) represents waves traveling due only to 

the known initial velocity w0(x) with zero initial displacement. 

The transverse vibration of a string fixed at both ends excited by the transverse impact 

of an elastic load at an intermediate point was considered in [8.6]. A review of the literature 

on the dynamics of cables and chains was given by Triantafyllou [8.7]. 

 

 

 Longitudinal Vibration of a Bar or Rod 
8.3.1 
Equation of 
Motion and 

Consider an elastic bar of length l with varying cross-sectional area A(x), as shown in 
Fig. 8.6. The forces acting on the cross sections of a small element of the bar are given by 

P and P + dP with 

Solution 0u 
P = sA = EA  

0x 
(8.45) 

where s is the axial stress, E is Young s modulus, u is the axial displacement, and 0u/0x is 
the axial strain. If f(x, t) denotes the external force per unit length, the summation of the 
forces in the x direction gives the equation of motion 

 

02u                                             
(P + dP) + f dx - P = rA dx 

0t2
 

 
(8.46) 
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position 

 
O x 
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FIGURE 8.6 Longitudinal vibration of a bar. 
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where r is the mass density of the bar. By using the relation dP  = (0P/0x) dx and Eq. 
(8.45), the equation of motion for the forced longitudinal vibration of a nonuniform bar, 
Eq. (8.46), can be expressed as 

0 0u(x, t) 02u 
  B EA(x)  

0x 0x 
R  + f(x, t)  = r(x)A(x)  

0t2  (x, t) (8.47) 

For a uniform bar, Eq. (8.47) reduces to 

02u 02u 

EA  

0x2
 (x, t)  + f(x, t)  = rA  

0t2 
 (x, t) 

The free-vibration equation can be obtained from Eq. (8.48), by setting f = 0, as 

(8.48) 

where 

2 0
2u 

c    
0x2

 (x, t)  = 

 
c = 

02u 

0t2
 (x, t) 

 
 

 

E 
 

 
(8.49) 

 
 

 
(8.50) 

A r 

Note that Eqs. (8.47) to (8.50) can be seen to be similar to Eqs. (8.5), (8.6), (8.8), and (8.9), 

respectively. The solution of Eq. (8.49), which can be obtained as in the case of Eq. (8.8), 

can thus be written as 
 

vx 
u(x, t)  = U(x)T(t)  K  ¢ A'  cos    

c   
+ B'  sin  

 

 (C cos vt + D sin vt) 

 
(8.51) 
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Equation 
 

vl 
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vl 
sin     , 0 

c 
 

 
vl 
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l 
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; 
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FIGURE 8.7 Common boundary conditions for a bar in longitudinal vibration. 
 

1We use A'  and B'  in this section; A is used to denote the cross-sectional area of the bar. 
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where the function U(x) represents the normal mode and depends only on x and the func- 

tion T(t) depends only on t. If the bar has known initial axial displacement u (x) and ini- 

#
tial velocity     (x), the initial conditions can be stated as 

 u(x, t = 0) = u0(x) 

 
0u # 

0t
 (x, t = 0) = u0(x) (8.52) 

The common boundary conditions and the corresponding frequency equations for the lon- 

gitudinal vibration of uniform bars are shown in Fig. 8.7. 

 

Boundary Conditions for a Bar 
E X A M P L E 8 . 2 
      A uniform bar of cross-sectional area A, length l, and Young s modulus E is connected at both ends 

by springs, dampers, and masses, as shown in Fig. 8.8(a). State the boundary conditions. 

 
Solution: The free-body diagrams of the masses m1 and m2 are shown in Fig. 8.8(b). From this, we 

find that at the left end (x  = 0), the force developed in the bar due to positive u and 0u/0x must be 
equal to the sum of spring, damper, and inertia forces: 

 
0u 0u 

 
02u 

AE  

0x
  (0, t)  = k1u(0, t)  + c1  

0t 
  (0, t)  + m1  

0t2 
  (0, t) (E.1) 

Similarly at the right end (x  = l), the force developed in the bar due to positive u and 0u/0x must be 
equal to the negative sum of spring, damper, and inertia forces: 

 

0u 0u 02u 

AE  

0x
  (l, t)  =  - k2u(l, t)  - c2  

0t 
 (l, t)  - m2  

0t2 
 (l, t) (E.2) 
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Free-body diagram of mass m1  Free-body diagram of mass m2 
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FIGURE 8.8 Bar connected to springs-masses-dampers at ends. 
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8.3.2 
Orthogonality  

The normal functions for the longitudinal vibration of bars satisfy the orthogonality relation 

l 

of Normal 
Functions 

Ui(x)Uj(x) dx = 0 

L0 

(8.53) 

where Ui(x) and Uj(x) denote the normal functions corresponding to the ith and jth natural 

frequencies vi and vj, respectively. When u(x, t) = Ui(x)T(t) and u(x, t) = Uj(x)T(t) 
are assumed as solutions, Eq. (8.49) gives 

c2  d
2Ui(x) + v2 U(x) = 0 or  c2 U (x) + v2 U(x) = 0 

 

 

 

(8.54) 

 
and 

dx2 i   i 

 
 

d2Uj(x) 

i i    i 

c2  + v2 U(x) = 0 or c2 U (x) + v2 U (x) = 0 (8.55) 

dx2 

 
d2U 

j  j 
 

 
d2Uj 

j j j 

where Ui 

Ui gives 

= i and U   = 
dx2 

j
 

 

dx2 
. Multiplication of Eq. (8.54) by Uj and Eq. (8.55) by  

 c2Ui Uj + v2UU = 0 

 c2Uj Ui + v2U U = 0 

(8.56) 

 
(8.57) 

 

Subtraction of Eq. (8.57) from Eq. (8.56) and integration from 0 to l results in 

 
l 

c2 l 
 Ui Uj dx = - 

v2 - v2
 (Ui Uj  - Uj Ui) dx 

L0 i j L0 

 

c2 l 

  = - 
2 2

 [UiUj - UjUi] ` 
i j 0 

 

(8.58) 

 

The right-hand side of Eq. (8.58) can be proved to be zero for any combination of bound- 

ary conditions. For example, if the bar is fixed at x = 0 and free at x = l, 

u(0, t) = 0,  

0u 

t Ú 0

       

or

 
 U(0) = 0 

 
¿ 

(8.59) 

 (l, t) = 0,  

0x 
t Ú 0 or U (l) = 0 (8.60) 

Thus (UiUj - Uj Ui) x= l = 0 due to U being zero (Eq. (8.60)) and (Ui Uj - Uj Ui) x= 0 = 0 
due to U being zero (Eq. (8.59)). Equation (8.58) thus reduces to Eq. (8.53), which is also 

known as the orthogonality principle for the normal functions. 
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Free Vibrations of a Fixed-Free Bar 
EX A M P L E  8 . 3    
      Find the natural frequencies and the free-vibration solution of a bar fixed at one end and free at the 

other. 
 

Solution: Let the bar be fixed at x = 0 and free at x = l, so that the boundary conditions can be 
expressed as 

u(0, t) = 0,  

0u 
 (l, t)  = 0,  

 

t Ú 0 

 
t Ú 0 

(E.1) 
 

(E.2) 

0x 

The use of Eq. (E.1) in Eq. (8.51) gives A'  = 0, while the use of Eq. (E.2) gives the frequency equation 

v vl vl 

B'   c 
 cos  

c   
= 0 or cos  = 0 

c 
(E.3) 

 The eigenvalues or natural frequencies are given by 

vnl p    = (2n + 1)  

c 2 

or 

 
 

, n = 0, 1, 2, Á 

  
vn = (2n + 1)pc ,  

2l 
n = 0, 1, 2, Á (E.4) 

Thus the total (free-vibration) solution of Eq. (8.49) can be written, using the mode superposition 

method, as 
 

q 

 u(x, t) = a un(x, t) 
n= 0 

 

q 

  = a sin  

n= 0 

(2n + 1)px 

2l 
BCn cos  

(2n + 1)pct 

2l 
+ Dn sin  

(2n + 1)pct 
R 

2l 

 

(E.5) 

 

where the values of the constants Cn and Dn can be determined from the initial conditions, as in Eqs. 

(8.33) and (8.34): 

2 
l (2n + 1)px 

 Cn = 
l L 

u0(x) sin    dx 
2l 

(E.6) 

4 
l 
# (2n + 1)px 

 Dn = 
(2n + 1)pc L 

u0(x) sin   
 dx 

2l 
(E.7) 

 

* 
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Natural Frequencies of a Bar Carrying a Mass 

E X A M P L E 8 . 4    
      Find the natural frequencies of a bar with one end fixed and a mass attached at the other end, as in 

Fig. 8.9. 

 
Solution: The equation governing the axial vibration of the bar is given by Eq. (8.49) and the 

solution by Eq. (8.51). The boundary condition at the fixed end (x = 0) 

u(0, t) = 0 (E.1) 

leads to A'  = 0 in Eq. (8.51). At the end x  = l, the tensile force in the bar must be equal to the iner- 
tia force of the vibrating mass M, and so 

 

0u 
AE  

0x 

 

 (l, t) = - M  

 

02u 

0t2 

 

 (l, t) 

 

(E.2) 

With the help of Eq. (8.51), this equation can be expressed as 
 

AE 
v
 cos 

vl
 (C cos vt + D sin vt) = Mv2 sin 

vl
 (C cos vt + D sin vt) 

  

c c c 
 

That is,  
AEv

 cos 
vl 

= Mv2 sin 
vl

 
   

c c c 
 

or 
 

 
where 

 
 

 
and 

 

 

a tan a = b 

 

vl 
a = 

c 

 

 
(E.3) 

 
 

(E.4) 

AEl 
b = 

c2M 

Arl m 
= = 

M M 

 

(E.5) 
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FIGURE 8.9 Bar carrying an end mass. 

r, A, E 

x M 

l 



 

716 CHAPTER 8 CONTINUOUS SYSTEMS 

 

TABLE 8.1 
 

Values of the Mass Ratio B 

 

 
1 1 l 

a2c Value of a  +v   = * 3.1448 3.1736 3.4267 4.3063  4.6658 
2 2 l 

 

 

 
where m is the mass of the bar. Equation (E.3) is the frequency equation (in the form of a transcen- 

dental equation) whose solution gives the natural frequencies of the system. The first two natural fre- 

quencies are given in Table 8.1 for different values of the parameter b. 
Note: If the mass of the bar is negligible compared to the mass attached, m M 0, 

 

 
E 

c = a 
r 

 

 
1/2 

b 

 

EAl 
= a 

m 

 

 
1/2 

b : q 

 

 
and  a = 

vl 
: 0 

c 

In this case 
 

vl vl 
tan M 

c c 
 

and the frequency equation (E.3) can be taken as 

vl  2 
a b = b 

c 
 

This gives the approximate value of the fundamental frequency 

 
c   1/2 c    rAl   1/2 

 
  

 

EA   1/2 
 

 

 

g   1/2 
 

 

 
 

where 

v1 = 
l
 b =   a b 

l M 
 

 
ds = 

= a b 
lM 

 
 

Mgl 

EA 

= a b 
ds 

represents the static elongation of the bar under the action of the load Mg. 
 

* 

 

Vibrations of a Bar Subjected to Initial Force 
E X A M P L E 8 . 5 

      A bar of uniform cross-sectional area A, density r, modulus of elasticity E, and length l is fixed at 
one end and free at the other end. It is subjected to an axial force F0 at its free end, as shown in 

Fig. 8.10(a). Study the resulting vibrations if the force F0 is suddenly removed. 
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a1c 
Value of a  +v  = * 
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FIGURE 8.10 Bar subjected to an axial 

force at end. 

 

 

Solution: The tensile strain induced in the bar due to F0 is 

 

e = 
F0 

EA 
 

Thus the displacement of the bar just before the force F0 is removed (initial displacement) is given by 
 

(see Fig. (8.10b)) 

= u(x, 0) = ex = 
F0x

,        0 x l 
  

 
 

(E.1) 
0 EA 

 

Since the initial velocity is zero, we have 

 
 

 # 0u 
u = (x, 0) = 0,  

0t 

0 x l (E.2) 

The general solution of a bar fixed at one end and free at the other end is given by Eq. (E.5) of 

Example 8.3: 
 

q 

 u(x, t) = a un(x, t) 
n= 0 

q 

  = a sin  

n= 0 

(2n + 1)px 

2l 
BCn cos  

(2n + 1)pct 

2l 
+ Dn sin  

# 

(2n + 1)pct 
R 

2l 

 
(E.3) 

where Cn and Dn are given by Eqs. (E.6) and (E.7) of Example 8.3. Since u0 = 0, we obtain Dn = 0. 
By using the initial displacement of Eq. (E.1) in Eq. (E.6) of Example 8.3, we obtain 

x 

l 

d0 

 
 

u0(x) 

u 



 

  
0 

0 
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Cn = 

 

2 
 

l L0 

lF0x # 
EA 

 
 sin  

(2n + 1) px 
 dx = 

2l 

 

8F l 
  

EAp2
  

 

(- 1)n 

(2n + 1)2 

 
(E.4) 

 

Thus the solution becomes 

 

u(x, t) = 

 
 

8F l  q 
  

a    

 

 

(- 1)n 

 

 

 
 sin  

 

 

(2n + 1) px 

 

 

 
 cos  

 

 

(2n + 1) pct 

 

 

 
(E.5) 

EAp2
n = 0 (2n + 1)2 2l 2l 

 

Equations (E.3) and (E.5) indicate that the motion of a typical point at x = x0 on the bar is com- 
posed of the amplitudes 

Cn sin  

(2n + 1)px0 

2l 

 

corresponding to the circular frequencies 
 

(2n + 1)pc 

2l 
 

* 
 

 

 Torsional Vibration of a Shaft or Rod 
Figure 8.11 represents a nonuniform shaft subjected to an external torque f(x, t) per unit 

length. If u(x, t) denotes the angle of twist of the cross section, the relation between the 
torsional deflection and the twisting moment Mt(x, t) is given by [8.8] 

 

0u 

Mt(x, t)  = GJ(x) 
0x

 (x, t) 

 
(8.61) 

where G is the shear modulus and GJ(x) is the torsional stiffness, with J(x) denoting the 

polar moment of inertia of the cross section in the case of a circular section. If the mass 

polar moment of inertia of the shaft per unit length is I0, the inertia torque acting on an ele- 

ment of length dx becomes 

02u 
I0 dx 

0t2
 

 

If an external torque f (x, t) acts on the shaft per unit length, the application of Newton s 

second law yields the equation of motion: 

 

 

 
By expressing dMt as 

02u 

(Mt + dMt) + f dx - Mt = I0 dx 
0t2

 

 
0Mt

 dx 
0x 

 
(8.62) 



 

x   dx 

l 

 TORSIONAL VIBRATION OF A SHAFT OR ROD 719 

 

 

 

 
O x 

 

 

 

(a) 
 

f(x, t) dx 
 

Mt  (x, t) 
dx 

 

u(x, t) 
 

u(x, t) * du(x, t) 

 

 

 
(b) 

Mt(x, t) * dMt(x, t) 

 

FIGURE 8.11 Torsional vibration of a shaft. 
 

and using Eq. (8.61), the forced torsional vibration equation for a nonuniform shaft can be 

obtained: 
0 0u 02u 

0x
 B GJ(x) 

0x
 (x, t)R + f(x, t) = I0(x) 

0t2
 (x, t) (8.63) 

 

For a uniform shaft, Eq. (8.63) takes the form 

02u 
 

02u 

GJ 
0x2

 (x, t) + f(x, t) = I0 
0t2

 (x, t) (8.64) 

which, in the case of free vibration, reduces to 

2 0
2u 

c 
0x2

 (x, t) = 

 
02u 

0t2
 (x, t) 

 

 
 

(8.65) 

where  
 

 

GJ 
c = 

A I0 

 

 
(8.66) 

Notice that Eqs. (8.63) to (8.66) are similar to the equations derived in the cases of trans- 
verse vibration of a string and longitudinal vibration of a bar. If the shaft has a uniform 

cross section, I0 = rJ. Hence Eq. (8.66) becomes 
 

G 
c = (8.67) 

A r 
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End Conditions 

of Shaft 

Fixed-free 

Boundary 

Conditions 

 u(0, t) , 0 

Frequency 

Equation 
 

vl 
 

 

Mode Shape 

(Normal Function) 
 

    u (x) , C sin 
(2n * 1) px

 
 

 

Natural 

Frequencies 

v , (2n * 1) pc
;
 

 
 cos     , 0 c n 2l n 2l 

 

 
 

Free-free 

+u 
(l, t) , 0 

+x 

+u vl 
 

 

 

 

  u (x) , C cos npx 
 

 

n , 0, 1, 2, . . . 
 

v , npc 
 

 

+x 
(0, t) , 0 

sin     , 0 
c n l n l   

; 

 
Fixed-fixed 

+u 
(l, t) , 0 

+x 
u(0, t) , 0 vl 

 
 

 
   u (x) , C cos npx 

 
 

n , 0, 1, 2, . . . 

v , npc ; 
 

 sin     , 0 c n l n l 

u(l, t) , 0 n , 1, 2, 3, . . . 

 

FIGURE 8.12 Boundary conditions for uniform shafts (rods) subjected to torsional vibration. 

 

 # 
If the shaft is given an angular displacement u0(x) and an angular velocity u0(x) at t = 0, 
the initial conditions can be stated as 

 u(x, t = 0) = u0(x) 
0u # 

0t
 (x, t = 0) = u0(x) 

The general solution of Eq. (8.65) can be expressed as 

(8.68) 

 

vx 
u(x, t) = a A cos  

c 

vx 
+ B sin  

c 
b (C cos vt + D sin vt) 

 
(8.69) 

 

The common boundary conditions for the torsional vibration of uniform shafts are indicated 

in Fig. 8.12 along with the corresponding frequency equations and the normal functions. 
 

Natural Frequencies of a Milling Cutter 
EX A M P L E  8 . 6    
      Find the natural frequencies of the plane milling cutter shown in Fig. 8.13 when the free end of the 

shank is fixed. Assume the torsional rigidity of the shank as GJ and the mass moment of inertia of the 

cutter as I0. 
 

Solution: The general solution is given by Eq. (8.69). From this equation, by using the fixed 

boundary condition u(0, t) = 0, we obtain A = 0. The boundary condition at x = l can be stated as 

0u 02u 

 
 

That is, 

GJ  

0x
  (l, t)  =  - I0   

0t2 
  (l, t) (E.1) 

v vl 
 

  

2 vl 
 

 

BGJ 
c
 cos 

c 
= BI0 v sin 

c
 



 

l 

Shank 
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Milling cutter 
 

FIGURE 8.13 Plane milling cutter. 

 

or 

 
vl

 tan 
vl  

=  
Jrl  

=  
J'rod 

   
 

 
 
 

(E.2) 

c c I0 I0 

where J' rod   = Jrl. Equation (E.2) can be expressed as 
 
 

a tan a = b  where a = 

 

vl 
and 

c 

 
'J rod 

b = 
I0 

 
 

(E.3) 

The solution of Eq. (E.3), and thus the natural frequencies of the system, can be obtained as in the 

case of Example 8.4. 
 

* 
 

8.5 Lateral Vibration of Beams 

8.5.1 
Equation of 
Motion 

Consider the free-body diagram of an element of a beam shown in Fig. 8.14, where M(x, t) 

is the bending moment, V(x, t) is the shear force, and f(x, t) is the external force per unit 

length of the beam. Since the inertia force acting on the element of the beam is 

02w 

rA(x) dx 
0t2

 (x, t) 

the force equation of motion in the z direction gives 
 

 
02w 

- (V + dV) + f(x, t) dx + V = rA(x) dx 
0t2

  (x, t) (8.70) 

where r is the mass density and A(x) is the cross-sectional area of the beam. The moment 

equation of motion about the y-axis passing through point O in Fig. 8.14 leads to 

dx 
(M + dM) - (V + dV) dx + f(x, t) dx  

2 
- M = 0 (8.71) 

  



 

722 CHAPTER 8 CONTINUOUS SYSTEMS 

 

f(x, t) 

M(x, t) M(x, t) * dM(x, t) 

 

O O+ 

 

x w (x, t) 
V(x, t) V(x, t) * dV(x, t) 

dx 
 

x 

(a) (b) 
 

FIGURE 8.14 A beam in bending. 

 
 

0V 0M By writing 
 

dV = 

 

 dx 

0x 

 

and dM = 

 

 dx 

0x 

and disregarding terms involving second powers in dx, Eqs. (8.70) and (8.71) can be written as 
 

0V 02w 

 -   
0x 

  (x, t)  + f(x, t)  = rA(x)    

0t2 
  (x, t) 

0M 
 (x, t) - V(x, t) = 0 

0x 

(8.72) 

 

(8.73) 

By using the relation V  = 0M/0x from Eq. (8.73), Eq. (8.72) becomes 

02M 02w 

-    
0x2 

 (x, t)  + f(x, t)  = rA(x)    

0t2 
  (x, t) (8.74) 

From the elementary theory of bending of beams (also known as the Euler-Bernoulli or 

thin beam theory), the relationship between bending moment and deflection can be 

expressed as [8.8] 

02w 

M(x, t)  = EI(x)   

0x2 
  (x, t) (8.75) 

 

where E is Young s modulus and I(x) is the moment of inertia of the beam cross section 

about the y-axis. Inserting Eq. (8.75) into Eq. (8.74), we obtain the equation of motion for 

the forced lateral vibration of a nonuniform beam: 

02 02w 02w 

0x2
  c EI(x)  

0x2 
  (x, t) d  + rA(x)    

0t2 
  (x, t)  = f(x, t) (8.76) 

z 
f(x, t) 

w(x, t) 

x dx 

l 



 

  0 

1 
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For a uniform beam, Eq. (8.76) reduces to 

04w 02w 

EI 
0x4

 (x, t) + rA 
0t2

 (x, t) = f(x, t) 

For free vibration, f(x, t) = 0, and so the equation of motion becomes 

(8.77) 

where 

2 0
4w 

c 
0x4

 (x, t) + 

 
c = 

02w 

0t2
 (x, t) = 0 

 
 

EI 

 
(8.78) 

 

 

 
(8.79) 

ArA 

 

8.5.2 
Initial 
Conditions 

Since the equation of motion involves a second-order derivative with respect to time and a 

fourth-order derivative with respect to x, two initial conditions and four boundary condi- 

tions are needed for finding a unique solution for w(x, t). Usually, the values of lateral dis- 
placement and velocity are specified as w (x) and # 

(x) at t = 0, so that the initial 

conditions become 
0 w0 

 w(x, t = 0) = w0(x) 

0w # 
      (x, t = 0) = w (x) 
0t 

(8.80) 

 

8.5.3 The free-vibration solution can be found using the method of separation of variables as 

Free Vibration 
w(x, t) = W(x)T(t) 

Substituting Eq. (8.81) into Eq. (8.78) and rearranging leads to 

(8.81) 

c2 d4W(x) 
 

 

d2T(t) 2 
 

 

W(x) 
dx4 

= - 
T(t)

  

 
dt2 

= a = v (8.82) 

where a = v2 is a positive constant (see Problem 8.45). Equation (8.82) can be written as 
two equations: 

d4W(x) 

dx4 

d2T(t) 

dt2 

- b4W(x) = 0 

 

+ v2T(t)  = 0 

(8.83) 

 

 
(8.84) 

where  
b4 = 

v
 

c2 

 

rAv2 
= 

EI 

 

 

(8.85) 

   

2 
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The solution of Eq. (8.84) can be expressed as 

T(t) = A cos vt + B sin vt 

 

 
(8.86) 

where A and B are constants that can be found from the initial conditions. For the solution 

of Eq. (8.83), we assume 

W(x) = Cesx (8.87) 

 

where C and s are constants, and derive the auxiliary equation as 

s4 - b4 = 0 

 

 

(8.88) 

The roots of this equation are 

s1,2 = ; b,  

Hence the solution of Eq. (8.83) becomes 

s3, 4  = ;ib (8.89) 

W(x) = C1e
bx + C2e

-
 
bx + C3e

ibx + C4e
-
 
ibx

 

where C1, C2, C3, and C4 are constants. Equation (8.90) can also be expressed as 

W(x) = C1 cos bx + C2 sin bx + C3 cosh bx + C4 sinh bx 

(8.90) 

 

 
(8.91) 

or 

 W(x) = C1(cos bx + cosh bx)  + C2(cos bx - cosh bx) 

  + C3(sin bx + sinh bx) + C4(sin bx - sinh bx) 

 

 

 

(8.92) 

where C1, C2, C3, and C4, in each case, are different constants. The constants C1, C2, C3, 

and C4 can be found from the boundary conditions. The natural frequencies of the beam 
are computed from Eq. (8.85) as 

 

 
v = b2  

 
 EI 
= (bl)2 

EI
 

 

 
(8.93) 

ArA ArAl4 
 

The function W(x) is known as the normal mode or characteristic function of the beam and 

v is called the natural frequency of vibration. For any beam, there will be an infinite num- 
ber of normal modes with one natural frequency associated with each normal mode. The 

unknown constants C1 to C4 in Eq. (8.91) or (8.92) and the value of b in Eq. (8.93) can be 
determined from the boundary conditions of the beam as indicated below. 

 

 

8.5.4 
Boundary 
Conditions 

The common boundary conditions are as follows: 

 
1. Free end: 

02w 
 Bending moment = EI = 0 

0x2 
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0 02w 

S hear force = 
0x

  ¢ EI 
0x2 

= 0 (8.94) 

2. Simply supported (pinned) end: 

02w 

Deflection = w = 0,  Bending moment  = EI  

0x2   
= 0 (8.95) 

3. Fixed (clamped) end: 

Deflection = 0,  
 Slope = 

0w 
= 0 

0x 
(8.96) 

The frequency equations, the mode shapes (normal functions), and the natural fre- 

quencies for beams with common boundary conditions are given in Fig. 8.15 

[8.13, 8.17]. We shall now consider some other possible boundary conditions for a 

beam. 

4. End connected to a linear spring, damper, and mass (Fig. 8.16(a)): When the end of a 

beam undergoes  a transverse  displacement  w and slope  0w/0x. with  velocity  0w/0t 

and acceleration 02w/0t2, the resisting forces due to the spring, damper, and mass are 

proportional to w, 0w/0t, and 02w/0t2, respectively. This resisting force is balanced by 
the shear force at the end. Thus 

0 02w 0w 02w 

0x
  ¢ EI  

0x2 = a B kw  + c   

0t   
+ m   

0t2  R (8.97) 

where a = - 1 for the left end and + 1 for the right end of the beam. In addition, the 
bending moment must be zero; hence 

02w 

EI  

0x2   
= 0 (8.98) 

5. End connected to a torsional spring, torsional damper, and rotational inertia (Fig. 

8.16(b)): In this case, the boundary conditions are 

02w 0w 02w 03w 

EI  

0x2   = a B kt  

0x  
+ ct  

0x0t  
+ I0  

0x0t2 R (8.99) 

where a = + 1 for the left end and - 1 for the right end of the beam, and 

0 02w 

0x
  B EI  

0x2 R  = 0 (8.100) 



 

sin bnl     sinh bnl 

cos bnl     cosh bnl 

2 2 
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End Conditions 

of Beam 

Pi 

 

 
 

Frequency 

Equation Mode Shape (Normal Function) 

 

n 

 

 
 

Value of bnl 

 

 

 

 

 
 

 n n a (cos b x    cosh b x)] 
  

 

b l       7.853205 
 

 

n n 

where 
n 2 

b3l     10.995608 

a 
sin bnl     sinh bnl b4l     14.137165 

 
 

 

Fixed-fixed 

n cosh bnl     cos bnl (bl       0 for rigid-  
body mode) 

cos bnl · cosh bnl     1 Wn(x)     Cn[sinh b nx nx     sin bnx 

 an (cosh bnx  cos bnx)] 

where 

a sinh bnl     sin bnl 
 

b1l  4.730041 

b2l  7.853205 
b3l 10.995608 

b4l 14.137165 

n cos bnl     cosh bnl 

Fixed-free  cos b l  cosh b l        1 
 

  

W (x)     C [sin b x     sinh b x 
 

  

b l       1.875104 
 

 

n · n n n n n 1 

where 

 an (cos bnx  cosh bnx)] 

a sin bnl     sinh bnl 
 

b2l  4.694091 
b3l  7.854757 

b4l 10.995541 

n cos bnl     cosh bnl 

Fixed-pinned  tan b l    tanh b l    0 
 

  

 
W  (x)     C [sin b x     sinh b x 

 

  

 
b l       3.926602 

 

n n n n n n 1 

where 

 an (cosh bnx     cos bnx)] 

an  
 

b2l  7.068583 

b3l 10.210176 
b4l 13.351768 

Pinned-free 
 

tan b l    tanh b l    0 
 

  

 
W  (x)     C [sin b x     a sinh b x] 

   

n n n 

where 
n n n n 

 

 

an  

b1l      3.926602 
b2l  7.068583 
b3l 10.210176 

b4l   13.351768 

(bl       0 for rigid- 

body mode) 
 

 

 

FIGURE 8.15 Common boundary conditions for the transverse vibration of a beam. 

 

8.5.5 
Orthogonality 
of Normal 
Functions 

The normal functions W(x) satisfy Eq. (8.83): 

 
d4W 

c  (x) - v W(x) = 0 
dx4 

 

 

 
(8.101) 

Let Wi(x) and Wj(x) be the normal functions corresponding to the natural frequencies vi 

and vj(i Z j), so that 
 

c2
  d

4Wi - v2W = 0 
 

(8.102) 
 

 

dx4 i  i 

sin bnl 

sinh bnl 

nned-pinned 
sin b l     0

  
Wn(x)   Cn[sin bnx] b1l 

b2l  
 p 

 2p 

     b3l 
b4l  

 3p 
 4p 

Free-free 
cos b l · cosh b l  1 Wn(x)   Cn[sin bnx     sinh bnx b1l     4.730041 

       

 



 

Beam 

ct1 

I01 I02 ct2 

Ô Ô 

i j 
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m1 m2 

 
x = 0 x = l 

(a) 

 

 

kt1 kt 2 

 
 
 

x = 0 x = l 

(b)  
 

FIGURE 8.16 Beams connected with springs-dampers-masses at ends. 

 

 

 
and 

 

 

 
c2

  

 

 
d4Wj 

 

 

 
- v2W = 0 

 

 

 
 

(8.103) 
 

 

dx4 j  j 

 

Multiplying Eq. (8.102) by Wj and Eq. (8.103) by Wi, subtracting the resulting equations 

one from the other, and integrating from 0 to l gives 

l d4W 
c2 2 

l d4W 2 2 
 

 

L 
B      

dx4  Wj  -  vi WiWjR  dx  -  
L 

Bc     
dx4   Wi  -  vjWjWi R  dx  =  0 

or 

l 
c2 l 

L 
WiWj dx = - 

v2 - v2 L 
(Wi Wj - WiWj ) dx (8.104) 

0 i j  0 
 

where a prime indicates differentiation with respect to x. The right-hand side of Eq. (8.104) 

can be evaluated using integration by parts to obtain 

l 
c2 

WiWj dx = -   

 
l 

 [WiW - WjW + WjWi   - WiWj ] `  
(8.105) 

 
 

L0 v2  -  v2 
j  i 

i j 0 

Beam 

c1 k1 k2 c2 

0 0 



 

  
For a fixed end, the deflection and slope are zero: 

At a simply supported end, the bending moment and deflection are zero: 
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The right-hand side of Eq. (8.105) can be shown to be zero for any combination of free, 

fixed, or simply supported end conditions. At a free end, the bending moment and shear 

force are equal to zero so that 

W = 0,  

  
W = 0 (8.106) 

W = 0,  

 
 

W¿ = 0 

  
(8.107) 

W = 0,  
W = 0 (8.108) 

Since each term on the right-hand side of Eq. (8.105) is zero at x = 0 or x = l for any 
combination of the boundary conditions in Eqs. (8.106) to (8.108), Eq. (8.105) reduces to 

 

l 

WiWj dx = 0 

L0 

 
(8.109) 

which proves the orthogonality of normal functions for the transverse vibration of beams. 
 

Natural Frequencies of a Fixed-Pinned Beam 
E X A M P L E 8 . 7    

      Determine the natural frequencies of vibration of a uniform beam fixed at x = 0 and simply sup- 

ported at x = l. 
 

Solution: The boundary conditions can be stated as 
 

W(0) = 0 

dW 
 (0) = 0 

dx 
W(l) = 0 

(E.1) 

 
(E.2) 

 (E.3) 
 
 

d2W 
 

 

 d2W 
 

 EI  

dx2 
 (l) = 0 or 

dx
2 

 (l) = 0 (E.4) 

 

Condition (E.1) leads to  

C1 + C3 = 0 

 

 
(E.5) 

in Eq. (8.91), while Eqs. (E.2) and (8.91) give 
 

dW 
`
 

dx 

 

 

x= 0 

 

= b[- C1 sin bx + C2 cos bx + C3 sinh bx + C4 cosh bx]x= 0 = 0 

 

or 

b[C2 + C4] = 0 

 

 

(E.6) 
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Thus the solution, Eq. (8.91), becomes 

W(x) = C1(cos bx - cosh bx) + C2(sin bx - sinh bx) 

Applying conditions (E.3) and (E.4) to Eq. (E.7) yields 

C1(cos bl - cosh bl) + C2(sin bl - sinh bl)    = 0 

- C1(cos bl + cosh bl) - C2(sin bl + sinh bl) = 0 

 
 
 

(E.7) 
 

 
(E.8) 

 

(E.9) 

For a nontrivial solution of C1 and C2, the determinant of their coefficients must be zero that is, 
 

` 
(cos bl - cosh bl) (sin bl - sinh bl) 

- (cos bl + cosh bl) - (sin bl + sinh bl) 
` = 0 

 
(E.10) 

 

Expanding the determinant gives the frequency equation 

cos bl sinh bl - sin bl cosh bl = 0 

or 

tan bl = tanh bl 
The roots of this equation, bnl, give the natural frequencies of vibration 

 

(E.11) 

 

2 EI 1/2     
vn = (bnl)  ¢ 

rAl4 
,  n = 1, 2, Á (E.12) 

 

where the values of bnl, n = 1, 2, Á satisfying Eq. (E.11) are given in Fig. 8.15. If the value of C2 

corresponding to bn is denoted as C2n, it can be expressed in terms of C1n from Eq. (E.8) as 
 

 
C = - C 

¢ 
cos bnl - cosh bnl 

 
(E.13) 

2n 1n 
sin bnl - sinh bnl 

 

Hence Eq. (E.7) can be written as 
 

cos bnl - cosh bnl W (x) = C B (cos b x - cosh b x) - ¢ 
 
(sin b x - sinh b x)R  (E.14) 

n 1n n n sin bnl - sinh bnl n n 
 

The normal modes of vibration can be obtained by the use of Eq. (8.81) 

wn(x, t) = Wn(x) (An cos vnt + Bn sin vnt) 

 

 
(E.15) 

with Wn(x) given by Eq. (E.14). The general or total solution of the fixed-simply supported beam 

can be expressed by the sum of the normal modes: 
 

q 

w(x, t) = a wn(x, t) 
n = 1 

 
 

(E.16) 
 

* 



 

n 



n 

n 
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8.5.6 
Forced Vibration 

The forced-vibration solution of a beam can be determined using the mode superposition 

principle. For this, the deflection of the beam is assumed as 

q 

w(x, t) = a Wn(x)qn(t) 
n = 1 

(8.110) 

where Wn(x) is the nth normal mode or characteristic function satisfying the differential 

equation (Eq. 8.101) 

d4W (x) 2 
EI  

dx4 
- vn r AWn(x) = 0;        n = 1, 2, Á 

(8.111) 

 

and qn(t) is the generalized coordinate in the nth mode. By substituting Eq. (8.110) into 

the forced-vibration equation, Eq. (8.77), we obtain 

q d4Wn(x) q d2qn(t) 

EI a 
n = 1 

4 
qn(t) + rA a Wn(x)  

n = 1 dt2 
= f(x, t) (8.112) 

In view of Eq. (8.111), Eq. (8.112) can be written as 

q q d2q (t) 
2 

a vnWn(x)qn(t) + a Wn(x)  dt2 
=
   f(x, t) rA (8.113) 

n = 1 n = 1 

By multiplying Eq. (8.113) throughout by Wm(x), integrating from 0 to l, and using the 

orthogonality condition, Eq. (8.109), we obtain 

d2qn(t) 
 

 
+ v2 q (t) = 

 

1 
 Q (t) 

 
 

 
(8.114) 

dt2 
n   n rAb   n 

where Qn(t) is called the generalized force corresponding to qn(t) 

 l 

Qn(t) = 
3 
0 

f(x, t)Wn(x) dx (8.115) 

and the constant b is given by 
 l 

b = W2(x) dx 
3 
0 

 

 
 

(8.116) 

Equation (8.114) can be identified to be, essentially, the same as the equation of motion of 

an undamped single-degree-of-freedom system. Using the Duhamel integral, the solution 

of Eq. (8.114) can be expressed as 

 qn(t) = An cos vnt + Bn sin vnt 

 t 

1 
  + 

rAbv 
Qn (T) sin vn(t - T) dT 

n 3 
0 

(8.117) 

dx 





1 



 

L 

n 

l 

n 

f0 sin vt 

a 

l 
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where the first two terms on the right-hand side of Eq. (8.117) represent the transient or 

free vibration (resulting from the initial conditions) and the third term denotes the steady- 

state vibration (resulting from the forcing function). Once Eq. (8.117) is solved for 

n = 1, 2, Á , the total solution can be determined from Eq. (8.110). 

 
Forced Vibration of a Simply Supported Beam 

EX A M P L E  8 . 8    
      Find the steady-state response of a pinned-pinned beam subject to a harmonic force f(x, t) = f0 sin vt 

applied at x = a, as shown in Fig. 8.17. 
 

Solution: Approach: Mode superposition method. 

The normal mode functions of a pinned-pinned beam are given by (see Fig. 8.15; also Problem 8.33) 

npx 
 
 

where 

Wn(x) = sin bnx = sin   
l
 

 

bnl = np 

(E.1) 
 

 
(E.2) 

The generalized force Qn(t), given by Eq. (8.115), becomes 

 l 

Qn(t) = f(x, t) sin bnx dx = f0 sin  

0 
 

The steady-state response of the beam is given by Eq. (8.117) 

 
 

npa 
 sin vt 

l 

 
 

 
(E.3) 

 
 

 
where 

 
1 

qn(t) = 
rAbv

 

 t 

Qn(T) sin vn (t - T) dT 

L0 

 
(E.4) 

 l 

b = W2(x) dx = 
L0 

 l 
l
 

sin2 bnx dx = 
L0  2 

(E.5) 

The solution of Eq. (E.4) can be expressed as 

q (t)  =  
2f0

 sin npa  sin vt (E.6) 

n rAl v2 - v2 

Thus the response of the beam is given by Eq. (8.110): 

2f0    
q  1 npa npx 

w(x, t) = 
rAl

 a 
v2 - v2

 sin   sin  l  sin vt l (E.7) 
n = 1  n 

 

 

FIGURE 8.17    Pinned-pinned beam under 

harmonic force. * 
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8.5.7 
Effect of Axial 
Force 

The problem of vibrations of a beam under the action of axial force finds application in 

the study of vibrations of cables and guy wires. For example, although the vibrations of 

a cable can be found by treating it as an equivalent string, many cables have failed due to 

fatigue caused by alternating flexure. The alternating flexure is produced by the regular 

shedding of vortices from the cable in a light wind. We must therefore consider the 

effects of axial force and bending stiffness on lateral vibrations in the study of fatigue 

failure of cables. 

To find the effect of an axial force P(x, t) on the bending vibrations of a beam, con- 

sider the equation of motion of an element of the beam, as shown in Fig. 8.18. For the ver- 

tical motion, we have 
 

02w 

- (V + dV) + f dx + V + (P + dP) sin(u + du) - P sin u = rA dx 
0t2

 

 

(8.118) 

 

and for the rotational motion about 0, 
 

dx 
(M + dM) - (V + dV) dx + f dx  

2 

 

- M = 0 

 
(8.119) 

 

For small deflections, 
 

 

sin(u + du) M u + du = u + 
0u 

 dx = 
0x 

0w 02w 

0x  
+  

0x2 
 dx 

 

 

 

f(x, t) 

 
 

 

w (x, t) 

 
M 

f dx 

 

V 

 

M Mdx 

P Pdx 

O u u dx 

P u V  
x 

V x 
dx 

 
x 

O  
dx

 

 

FIGURE 8.18 An element of a beam under axial load. 

x 

x dx P(x, t) 



 

2 
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With this, Eqs. (8.118), (8.119), and (8.75) can be combined to obtain a single differential 

equation of motion: 
02 02w 02w 02w 

0x2   B EI  

0x2 R  + rA   

0t2    - P  

0x2   = f (8.120) 

For the free vibration of a uniform beam, Eq. (8.120) reduces to 

04w 02w 02w 

EI  

0x4   
+ rA   

0t2    
- P  

0x2   
= 0 (8.121) 

The solution of Eq. (8.121) can be obtained using the method of separation of variables as 

w(x, t) = W(x) (A cos vt + B sin vt) 

Substitution of Eq. (8.122) into Eq. (8.121) gives 

(8.122) 

d4W d2W 2 

EI 
dx4   

- P 
dx2   

- rAv W = 0 

By assuming the solution W(x) to be 

(8.123) 

W(x) = Cesx 

in Eq. (8.123), the auxiliary equation can be obtained: 

(8.124) 

 
 

 

The roots of Eq. (8.125) are 

 

s4 - 

 

 
P 

P 
 s  - 

EI 

rAv2 
= 0 

EI 
 

 
P2 

 

 

 

 

 

 

 

1/2 

 
(8.125) 

s2, s2 = ; ¢ + (8.126) 
1   2 2EI 4E2I2 

and so the solution can be expressed as (with absolute value of s2) 

W(x) = C1 cosh s1x + C2 sinh s1x + C3 cos s2x + C4 sin s2x 

where the constants C1 to C4 are to be determined from the boundary conditions. 

 

 
(8.127) 

 

Beam Subjected to an Axial Compressive Force 
E X A M P L E 8 . 9    
      Find the natural frequencies of a simply supported beam subjected to an axial compressive force. 

 

Solution: The boundary conditions are 
 

 

W(0) = 0 

d2W 

 

 
(E.1) 

dx2 
 (0) = 0 (E.2) 

rAv2 

EI 



 

Since sinh s1l 7 0 for all values of s1l Z 0, the only roots to this equation are 
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W(l) = 0 

d2W 

(E.3) 

dx2 
 (l)  = 0 (E.4) 

 

Equations (E.1) and (E.2) require that C1 = C3 = 0 in Eq. (8.127), and so 

W(x) = C2 sinh s1x + C4 sin s2x 

 

(E.5) 

 

The application of Eqs. (E.3) and (E.4) to Eq. (E.5) leads to 

sinh s l # sin s l = 0 

 
 

 
(E.6) 

1 2 

 

  
s2l = np, n = 0, 1, 2, Á (E.7) 

 

Thus Eqs. (E.7) and (8.126) give the natural frequencies of vibration: 
 

p2 
vn =   

2 
  

 

 

EI 
  + n4 + 

 
n2Pl2 

 2 

1/2 
* 

 
(E.8) 

l  ArA 
p EI 

Since the axial force P is compressive, P is negative. Further, from strength of materials, the smallest 

Euler buckling load for a simply supported beam is given by [8.9] 

p2EI 
 

 
Thus Eq. (E.8) can be written as 

P cri = 
l2 

(E.9) 

 

p2  EI 
 

  

1/2 4 1/2 2 
 

 

vn =   + * 
l2 rA 

+ n  - n * 
P cri 

(E.10) 

The following observations can be made from the present example: 

 

1. If P = 0, the natural frequency will be same as that of a simply supported beam given in Fig. 8.15. 

2. If EI = 0, the natural frequency (see Eq. (E.8)) reduces to that of a taut string. 

3. If P 7 0, the natural frequency increases as the tensile force stiffens the beam. 

4. As P : P cri, the natural frequency approaches zero for n = 1. 
 

* 

 

8.5.8 
Effects of Rotary 
Inertia and 
Shear 
Deformation 

If the cross-sectional dimensions are not small compared to the length of the beam, we 

need to consider the effects of rotary inertia and shear deformation. The procedure, pre- 

sented by Timoshenko [8.10], is known as the thick beam theory or Timoshenko beam the- 

ory. Consider the element of the beam shown in Fig. 8.19. If the effect of shear 

deformation is disregarded, the tangent to the deflected center line O¿T coincides with the 

normal to the face Q¿R¿ (since cross sections normal to the center line remain normal even 

P 



 

+t 2 

rI dx +
2f 

+t2 
f M + dM 

M 
N 

V 
Q, 

P, 

D 

g 
+w 
+x 

f 
T 

O, 

S, 
R, V * dV 

dx 

w 
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z,w rA dx +
2w 

 

 

 

 

 

 

 

 

 

 

 

 

 

O 
 

FIGURE 8.19 An element of Timoshenko 

beam. 

 

after deformation). Due to shear deformation, the tangent to the deformed center line O¿T 

will not be perpendicular to the face Q¿R¿. The angle g between the tangent to the 

deformed center line (O¿T) and the normal to the face (O¿N) denotes the shear deforma- 

tion of the element. Since positive shear on the right face Q¿R¿ acts downward, we have, 
from Fig. 8.19, 

0w 
g = f - 

0x 

 

(8.128) 

 

where f denotes the slope of the deflection curve due to bending deformation alone. Note 
that because of shear alone, the element undergoes distortion but no rotation. 

The bending moment M and the shear force V are related to f and w by the formulas2 

0f 

 
 

and 

M = EI  
0x 

 
0w 

(8.129) 

V  = kAGg = kAG +f - * 
0x 

(8.130) 

 

where G denotes the modulus of rigidity of the material of the beam and k is a con- 

stant, also known as Timoshenko s shear coefficient, which depends on the shape of 
 

2Equation (8.129) is similar to Eq. (8.75). Equation (8.130) can be obtained as follows: 

Shear force = Shear stress * Area = Shear strain * Shear modulus * Area 

or 

V = gGA 

This equation is modified as V = kAGg by introducing a factor k on the right-hand side to take care of the shape 
of the cross section. 
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the cross section. For a rectangular section the value of k is 5/6; for a circular section 

it is 9/10 [8.11]. 

The equations of motion for the element shown in Fig. 8.19 can be derived as follows: 

 
1. For translation in the z direction: 

 

 - [V(x, t) + dV(x, t)] + f(x, t) dx + V(x, t) 

 0
2w   = rA(x) dx (x, t) 

0t2 

  K Translational inertia of the element (8.131) 
 

2. For rotation about a line passing through point D and parallel to the y-axis: 
 

 [M(x, t) + dM(x, t)] + [V(x, t) + dV(x, t)] dx 

dx 
  + f(x, t) dx  

2 

 

- M(x, t) 

02f 

  = rI(x) dx 
0t2   

K Rotary inertia of the element 

 

(8.132) 

 

Using the relations 

0V 0M 

dV =  dx 

0x 
and dM =  dx 

0x 

along with Eqs. (8.129) and (8.130) and disregarding terms involving second powers in dx, 

Eqs. (8.131) and (8.132) can be expressed as 
 

0f 02w 02w 

 - kAG +  - 
0x 0x2 *  + f(x, t)  = rA  

0t2
 (8.133) 

 

02f 0w 02f 

 EI  
0x2   - kAG  +f -  

0x 
*  = rI  

0t2 (8.134) 

 

By solving Eq. (8.133) for 0f/0x and substituting the result in Eq. (8.134), we obtain the 
desired equation of motion for the forced vibration of a uniform beam: 

 

04w 02w E 04w r2I 04w 

 EI  
0x4   

+ rA  
0t2    

- rIa 1  + kG 
b  

0x2 0t2  
+
 

 
 

kG
 
0t4 
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EI   02f rI   02f 

  +  
kAG

 
0x2  

-
 kAG

 
0t2  

- f = 0 (8.135) 

For free vibration, f = 0, and Eq. (8.135) reduces to 

04w 02w E 04w r2I 04w 

EI  
0x4   

+ rA  
0t2    

- rIa 1  + kG 
b  

0x2 0t2  
+
 kG

 
0t4 

= 0
 

(8.136) 

The following boundary conditions are to be applied in the solution of Eq. (8.135) or 

(8.136): 

1. Fixed end: 

2. Simply supported end: 

f = w = 0 

0f 

3. Free end: 

EI  

0x 

 
 

0w 

= w = 0 

 

 
0f 

kAG a 
0x 

- fb  = EI  = 0 
0x 

 

 

Natural Frequencies of a Simply Supported Beam 
E X A M P L E 8 . 1 0      
    Determine the effects of rotary inertia and shear deformation on the natural frequencies of a simply 

supported uniform beam. 

 
Solution: By defining 

a2 = 
EI

       and       r2 = 
I
 

 

 
 

 
(E.1) 

rA A 
 

Eq. (8.136) can be written as 
 

 
a2  0

4w 02w 
+ 

 

 
- r2a 1 + E 04w 

b   
 

rr2 04w 
+       = 0 

 
(E.2) 

0x4 0t2 kG    0x2 0t2 kG 0t4 

 

We can express the solution of Eq. (E.2) as 

 

w(x, t) = C sin  
npx 

l  
 cos vnt 

 
(E.3) 



 

n 

n 
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which satisfies the necessary boundary conditions at x = 0 and x = l. Here, C is a constant and 

vn is the nth natural frequency. By substituting Eq. (E.3) into Eq. (E.2), we obtain the frequency 
equation: 

rr2 n2p2r2 n2p2r2 E a2n4p4 
v4 + *  - v2 + 1  + +      * + + 

 

 

* = 0 
 

 

(E.4) 
n   kG n 

l2 l2 kG l4 

 

It can be seen that Eq. (E.4) is a quadratic equation in v2, and for any given n there are two values of 

vn that satisfy Eq. (E.4). The smaller value corresponds to the bending deformation mode, while the 
larger one corresponds to the shear deformation mode. 

The values of the ratio of vn given by Eq. (E.4) to the natural frequency given by the classical 
theory (in Fig. 8.15) are plotted for three values of E/kG in Fig. 8.20 [8.22].3 

Note the following aspects of rotary inertia and shear deformation: 

 
1. If the effect of rotary inertia alone is considered, the resulting equation of motion does not 

contain any term involving the shear coefficient k. Hence we obtain (from Eq. (8.136)): 
 

 
EI  0

4w 

0x4 

 

+ rA  
02w 

0t2 

 

- rI  
04w 

= 0 
0x2 0t2 

 
(E.5) 

 

In this case the frequency equation (E.4) reduces to 

 

v2 = 
4 

a2n4p4 

n2p2r2 
 

 

 
(E.6) 

l + 1 + * 
l2 
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FIGURE 8.20 Variation of frequency. 

 
 

3The theory used for the derivation of the equation of motion (8.76), which disregards the effects of rotary inertia 

and shear deformation, is called the classical or Euler-Bernoulli or thin beam theory. 
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2. If the effect of shear deformation alone is considered, the resulting equation of motion does 

not contain the terms originating from rI(02f/0t2) in Eq. (8.134). Thus we obtain the equa- 
tion of motion 

04w 02w EIr   04w 
EI  + rA  -       = 0 (E.7) 

0x4 0t2 kG  0x2 0t2 
 

and the corresponding frequency equation 
 

v2 = 
4 

 

 

a2n4p4 

n2p2r2 E 

 
 
 

(E.8) 

l + 1 +       * 
l2 kG 

 
3. If both the effects of rotary inertia and shear deformation are disregarded, Eq. (8.136) reduces 

to the classical equation of motion, Eq. (8.78), 

 
 
 
 

and Eq. (E.4) to 

 
EI  0

4w 

0x4 

 

+ rA  
02w 

= 0 
0t2 

 
(E.9) 

 

v2 = 
a2n4p4 

 

l4 

 
(E.10) 

 

* 

 

 
8.5.9 
Other Effects 

 
The transverse vibration of tapered beams is presented in references [8.12, 8.14]. The nat- 

ural frequencies of continuous beams are discussed by Wang [8.15]. The dynamic response 

of beams resting on elastic foundation is considered in reference [8.16]. The effect of sup- 

port flexibility on the natural frequencies of beams is presented in [8.18, 8.19]. A treatment 

of the problem of natural vibrations of a system of elastically connected Timoshenko 

beams is given in reference [8.20]. A comparison of the exact and approximate solutions of 

vibrating beams is made by Hutchinson [8.30]. The steady-state vibration of damped 

beams is considered in reference [8.21]. 

 

8.6 Vibration of Membranes 

A membrane is a plate that is subjected to tension and has negligible bending resistance. 

Thus a membrane bears the same relationship to a plate as a string bears to a beam. A 

drumhead is an example of a membrane. 

 

8.6.1 
Equation 
of Motion 

To derive the equation of motion of a membrane, consider the membrane to be bounded by 

a plane curve S in the xy-plane, as shown in Fig. 8.21. Let f(x, y, t) denote the pressure load- 

ing acting in the z direction and P the intensity of tension at a point that is equal to the 

product of the tensile stress and the thickness of the membrane. The magnitude of P is usually 
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This shows that the addition of a 10.0561-oz weight in the left plane at 145.5548° and a 5.8774-oz 

weight in the right plane at 248.2559° from the reference position will balance the turbine rotor. It is 

implied that the balance weights are added at the same radial distance as the trial weights. If a bal- 

ance weight is to be located at a different radial position, the required balance weight is to be modi- 

fied in inverse proportion to the radial distance from the axis of rotation. 

* 

9.5 Whirling of Rotating Shafts 
 

 

 

 

 

 

 

 

 

9.5.1 
Equations of 
Motion 

In the previous section, the rotor system the shaft as well as the rotating body was 

assumed to be rigid. However, in many practical applications, such as turbines, compres- 

sors, electric motors, and pumps, a heavy rotor is mounted on a lightweight, flexible shaft 

that is supported in bearings. There will be unbalance in all rotors due to manufacturing 

errors. These unbalances as well as other effects, such as the stiffness and damping of the 

shaft, gyroscopic effects, and fluid friction in bearings, will cause a shaft to bend in a com- 

plicated manner at certain rotational speeds, known as the whirling, whipping, or critical 

speeds. Whirling is defined as the rotation of the plane made by the line of centers of the 

bearings and the bent shaft. We consider the aspects of modeling the rotor system, critical 

speeds, response of the system, and stability in this section [9.13 9.14]. 
 

Consider a shaft supported by two bearings and carrying a rotor or disc of mass m at the 

middle, as shown in Fig. 9.11. We shall assume that the rotor is subjected to a steady-state 

excitation due to mass unbalance. The forces acting on the rotor are the inertia force due to 

the acceleration of the mass center, the spring force due to the elasticity of the shaft, and 

the external and internal damping forces.3 
 

 
 

FIGURE 9.11 Shaft carrying a rotor. 

 

3Any rotating system responds in two different ways to damping or friction forces, depending upon whether the 

forces rotate with the shaft or not. When the positions at which the forces act remain fixed in space, as in the case 

of damping forces (which cause energy losses) in the bearing support structure, the damping is called stationary 

or external damping. On the other hand, if the positions at which they act rotate with the shaft in space, as in the 

case of internal friction of the shaft material, the damping is called rotary or internal damping. 

Rotor or disc Shaft 
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FIGURE 9.12 Rotor with eccentricity. 

 

 
Let O denote the equilibrium position of the shaft when balanced perfectly, as shown 

in Fig. 9.12. The shaft (line CG) is assumed to rotate with a constant angular velocity v. 

During rotation, the rotor deflects radially by a distance A = OC (in steady state). The 

rotor (disc) is assumed to have an eccentricity a so that its mass center (center of gravity) 

G is at a distance a from the geometric center, C. We use a fixed coordinate system (x and 
y fixed to the earth) with O as# the origin for describing the motion of the system. The angu- 

lar velocity of the line OC,  
    

= du/dt, is known as the whirling speed and, in general, is 

not equal to v. The equations of motion of the rotor (mass m) can be written as 

! ! 
  

I nertia force 1Fi2 = Elastic force 1Fe2 
!
 

 

  + Internal damping force 1Fd
!
i2 

  + External damping force 1Fde2 

 
(9.25) 

The various forces in Eq. (9.25) can be expressed as follows: 

! $! 
 

Inertia force: Fi = mR 
! 

 

(9.26) 

where R denotes the radius vector of the mass center G given by 
! ! ! 

  

R  = 1x  + a cos vt2i  + 1y  + a sin vt2j  
! ! 

 

(9.27) 

with x and y representing the coordinates of the geometric center C and i and j denoting 

the unit vectors along the x and y coordinates, respectively. Equations (9.26) and (9.27) 

lead to 
! 

2 
! $ 2 

! 
  

 Fi  = m[1x  - av  cos vt2i  + 1y  - av  sin vt2j] (9.28) 
! ! ! 

  

 Elastic force: Fe  =  -k1xi  + yj2 (9.29) 
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where k is the stiffness of the shaft. 

! 
 

 
# ! # ! 

 

Internal damping force: Fdi =  - ci [1x + vy2i + 1y + vx2j] (9.30) 
 

where ci is the internal or rotary damping coefficient: 

! # ! # ! 
  

External damping force: Fde = - c1xi + yj2 (9.31) 
 

where C is the external damping coefficient. By substituting Eqs. (9.28) to (9.31) into 

Eq. (9.25), we obtain the equations of motion in scalar form: 

$ # 2 

 mx + 1ci + c2x + kx - civy = mv a cos vt (9.32) 

$ # 2 

 my + 1ci + c2y + ky - civx = mv a sin vt (9.33) 
 

These equations of motion, which describe the lateral vibration of the rotor, are coupled 

and are dependent on the speed of the steady-state rotation of the shaft, v. By defining a 
complex quantity w as 

 

w = x + iy (9.34) 
 

where i  = 1 - 121/2, and by adding Eq. (9.32) to Eq. (9.33) multiplied by i, we obtain a sin- 
gle equation of motion: 

$ # 2 
 

ivt 

mw + 1ci + c2w + kw - ivciw = mv a e (9.35) 

 

9.5.2 
Critical Speeds 

A critical speed is said to exist when the frequency of the rotation of a shaft equals one of 
the natural frequencies of the shaft. The undamped natural frequency of the rotor system 
can be obtained by solving Eqs. (9.32), (9.33), or (9.35), retaining only the homogeneous 

part with ci = c = 0. This gives the natural frequency of the system (or critical speed of 

the undamped system): 
 

k 
vn = a 

m 
b 

1/ 2  
(9.36) 

 

When the rotational speed is equal to this critical speed, the rotor undergoes large deflec- 

tions, and the force transmitted to the bearings can cause bearing failures. A rapid transition 

of the rotating shaft through a critical speed is expected to limit the whirl amplitudes, while 

a slow transition through the critical speed aids the development of large amplitudes. Refer- 

ence [9.15] investigates the behavior of the rotor during acceleration and deceleration 

through critical speeds. A FORTRAN computer program for calculating the critical speeds 

of rotating shafts is given in reference [9.16]. 
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